Compare commits

...

2 Commits

Author SHA1 Message Date
schrom01 5991cc7a13 Solved Task 2b 2022-10-04 14:58:09 +02:00
schrom01 9b6be2f99d Solved Task 2b 2022-10-04 14:54:32 +02:00
2 changed files with 60 additions and 7 deletions

View File

@ -32,22 +32,31 @@ print("min f2: ", min(yf2), "max f2: ", max(yf2))
xmin = -10 ** -14
xmax = 10 ** -14
xsteps = 10 ** -17
def g(x):
def g1(x):
return x / (np.sin(1 + x) - np.sin(1))
x2 = np.arange(xmin, xmax + xsteps, xsteps)
yg = np.array([])
yg1 = np.array([])
for x_value in x2:
yg = np.append(yg, g(x_value))
plt.plot(x2, yg)
plt.legend(["g(x)"])
plt.figure()
print("min g: ", min(yg), "max g: ", max(yg))
yg1 = np.append(yg1, g1(x_value))
plt.plot(x2, yg1)
print("min g1: ", min(yg1), "max g1: ", max(yg1))
# Die Berechnung des Grenzwertes für x --> 0 g(x) ist nicht stabil.
# Der Grenzwert scheint unendlich gross / klein zu sein.
# Aufgabe 2c
# a = 1+x, b = 1
def g2(x):
return x / (2 * np.cos((1 + x + 1) / 2) * np.sin((1 + x - 1) / 2))
yg2 = np.array([])
for x_value in x2:
yg2 = np.append(yg2, g2(x_value))
plt.plot(x2, yg2)
print("min g2: ", min(yg2), "max g2: ", max(yg2))
plt.legend(["g1(x)", "g2(x)"])
# Der Grenzwert für x = 0 beträgt 1.85. Die Funktion ist nun stabil?
#
plt.show()

View File

@ -0,0 +1,44 @@
import numpy as np
import matplotlib.pyplot as plt
def s2n(s1n):
return np.sqrt(2 - 2 * np.sqrt(1 - ((s1n ** 2) / 4)))
def s2n_new(s1n):
return np.sqrt((s1n ** 2) / (2 * (1 + np.sqrt(1 - ((s1n ** 2) / 4)))))
r = int(1) #Radius
n = int(6) #Anzahl Ecken
sn = r
sn_new = r
x = np.array([])
y = np.array([])
y_new = np.array([])
for i in range(50):
sum_s = sn * n
sum_s_new = sn_new * n
pi = sum_s / 2
pi_new = sum_s_new / 2
print("n: ", n, " sn: ", sn_new, " pi: ", pi)
x = np.append(x, n)
y = np.append(y, pi)
y_new = np.append(y_new, pi_new)
n = n * 2
sn = s2n(sn)
sn_new = s2n_new(sn_new)
plt.plot(x, y)
plt.plot(x, y_new)
plt.xscale('log', base=2)
plt.xlim((2**3, 2**31))
plt.ylim((3.125, 3.15))
plt.legend(["pi", "pi_new"])
plt.show()
# mit der ersten Formel stimmt der berechnete Wert ab n = 50331648 nicht mehr.
# mit n = 805306368 erhält man für pi 6, danach immer 0.
# mit der zweiten Formel tritt der Fehler nicht auf.