40 lines
1.2 KiB
Python
40 lines
1.2 KiB
Python
|
import numpy as np
|
||
|
from math import nan
|
||
|
|
||
|
def Schenk_Brandenberger_S9_Aufg2(A, A_approx, b, b_approx):
|
||
|
cond_A = np.linalg.cond(A,np.inf)
|
||
|
norm_A_minus_A_approx = np.linalg.norm((A-A_approx),np.inf)
|
||
|
norm_A = np.linalg.norm(A,np.inf)
|
||
|
norm_b_minus_b_approx = np.linalg.norm((b-b_approx),np.inf)
|
||
|
norm_b = np.linalg.norm(b,np.inf)
|
||
|
x = np.linalg.solve(A,b)
|
||
|
x_approx = np.linalg.solve(A_approx,b_approx)
|
||
|
dxmax = (cond_A/(1-(cond_A*(norm_A_minus_A_approx/norm_A))))*((norm_A_minus_A_approx/norm_A)+(norm_b_minus_b_approx/norm_b))
|
||
|
dxobs = np.linalg.norm((x-x_approx),np.inf)/np.linalg.norm(x,np.inf)
|
||
|
if(cond_A*(norm_A_minus_A_approx/norm_A)) >= 1:
|
||
|
dxmax = nan
|
||
|
return [x, x_approx, dxmax, dxobs]
|
||
|
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
|
||
|
# Werte aus Aufgabe 1
|
||
|
A = np.array([[20, 30, 10],
|
||
|
[10, 17, 6],
|
||
|
[2, 3, 2]])
|
||
|
A_approx = A - 0.1
|
||
|
|
||
|
b = np.array([[5720],
|
||
|
[3300],
|
||
|
[836]])
|
||
|
b_approx = b + 100
|
||
|
print(b_approx)
|
||
|
|
||
|
[x, x_approx, dxmax, dxobs] = Schenk_Brandenberger_S9_Aufg2(A, A_approx, b, b_approx)
|
||
|
print("Value x: ")
|
||
|
print(x)
|
||
|
print("X approx with error: ")
|
||
|
print(x_approx)
|
||
|
print("dx max: ", dxmax)
|
||
|
print("dx obs: ", dxobs)
|