529 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			PHP
		
	
	
	
			
		
		
	
	
			529 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			PHP
		
	
	
	
<?php
 | 
						|
/**
 | 
						|
 *    @package JAMA
 | 
						|
 *
 | 
						|
 *    For an m-by-n matrix A with m >= n, the singular value decomposition is
 | 
						|
 *    an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and
 | 
						|
 *    an n-by-n orthogonal matrix V so that A = U*S*V'.
 | 
						|
 *
 | 
						|
 *    The singular values, sigma[$k] = S[$k][$k], are ordered so that
 | 
						|
 *    sigma[0] >= sigma[1] >= ... >= sigma[n-1].
 | 
						|
 *
 | 
						|
 *    The singular value decompostion always exists, so the constructor will
 | 
						|
 *    never fail.  The matrix condition number and the effective numerical
 | 
						|
 *    rank can be computed from this decomposition.
 | 
						|
 *
 | 
						|
 *    @author  Paul Meagher
 | 
						|
 *    @license PHP v3.0
 | 
						|
 *    @version 1.1
 | 
						|
 */
 | 
						|
class SingularValueDecomposition
 | 
						|
{
 | 
						|
    /**
 | 
						|
     *    Internal storage of U.
 | 
						|
     *    @var array
 | 
						|
     */
 | 
						|
    private $U = array();
 | 
						|
 | 
						|
    /**
 | 
						|
     *    Internal storage of V.
 | 
						|
     *    @var array
 | 
						|
     */
 | 
						|
    private $V = array();
 | 
						|
 | 
						|
    /**
 | 
						|
     *    Internal storage of singular values.
 | 
						|
     *    @var array
 | 
						|
     */
 | 
						|
    private $s = array();
 | 
						|
 | 
						|
    /**
 | 
						|
     *    Row dimension.
 | 
						|
     *    @var int
 | 
						|
     */
 | 
						|
    private $m;
 | 
						|
 | 
						|
    /**
 | 
						|
     *    Column dimension.
 | 
						|
     *    @var int
 | 
						|
     */
 | 
						|
    private $n;
 | 
						|
 | 
						|
    /**
 | 
						|
     *    Construct the singular value decomposition
 | 
						|
     *
 | 
						|
     *    Derived from LINPACK code.
 | 
						|
     *
 | 
						|
     *    @param $A Rectangular matrix
 | 
						|
     *    @return Structure to access U, S and V.
 | 
						|
     */
 | 
						|
    public function __construct($Arg)
 | 
						|
    {
 | 
						|
        // Initialize.
 | 
						|
        $A = $Arg->getArrayCopy();
 | 
						|
        $this->m = $Arg->getRowDimension();
 | 
						|
        $this->n = $Arg->getColumnDimension();
 | 
						|
        $nu      = min($this->m, $this->n);
 | 
						|
        $e       = array();
 | 
						|
        $work    = array();
 | 
						|
        $wantu   = true;
 | 
						|
        $wantv   = true;
 | 
						|
        $nct = min($this->m - 1, $this->n);
 | 
						|
        $nrt = max(0, min($this->n - 2, $this->m));
 | 
						|
 | 
						|
        // Reduce A to bidiagonal form, storing the diagonal elements
 | 
						|
        // in s and the super-diagonal elements in e.
 | 
						|
        for ($k = 0; $k < max($nct, $nrt); ++$k) {
 | 
						|
            if ($k < $nct) {
 | 
						|
                // Compute the transformation for the k-th column and
 | 
						|
                // place the k-th diagonal in s[$k].
 | 
						|
                // Compute 2-norm of k-th column without under/overflow.
 | 
						|
                $this->s[$k] = 0;
 | 
						|
                for ($i = $k; $i < $this->m; ++$i) {
 | 
						|
                    $this->s[$k] = hypo($this->s[$k], $A[$i][$k]);
 | 
						|
                }
 | 
						|
                if ($this->s[$k] != 0.0) {
 | 
						|
                    if ($A[$k][$k] < 0.0) {
 | 
						|
                        $this->s[$k] = -$this->s[$k];
 | 
						|
                    }
 | 
						|
                    for ($i = $k; $i < $this->m; ++$i) {
 | 
						|
                        $A[$i][$k] /= $this->s[$k];
 | 
						|
                    }
 | 
						|
                    $A[$k][$k] += 1.0;
 | 
						|
                }
 | 
						|
                $this->s[$k] = -$this->s[$k];
 | 
						|
            }
 | 
						|
 | 
						|
            for ($j = $k + 1; $j < $this->n; ++$j) {
 | 
						|
                if (($k < $nct) & ($this->s[$k] != 0.0)) {
 | 
						|
                    // Apply the transformation.
 | 
						|
                    $t = 0;
 | 
						|
                    for ($i = $k; $i < $this->m; ++$i) {
 | 
						|
                        $t += $A[$i][$k] * $A[$i][$j];
 | 
						|
                    }
 | 
						|
                    $t = -$t / $A[$k][$k];
 | 
						|
                    for ($i = $k; $i < $this->m; ++$i) {
 | 
						|
                        $A[$i][$j] += $t * $A[$i][$k];
 | 
						|
                    }
 | 
						|
                    // Place the k-th row of A into e for the
 | 
						|
                    // subsequent calculation of the row transformation.
 | 
						|
                    $e[$j] = $A[$k][$j];
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            if ($wantu and ($k < $nct)) {
 | 
						|
                // Place the transformation in U for subsequent back
 | 
						|
                // multiplication.
 | 
						|
                for ($i = $k; $i < $this->m; ++$i) {
 | 
						|
                    $this->U[$i][$k] = $A[$i][$k];
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            if ($k < $nrt) {
 | 
						|
                // Compute the k-th row transformation and place the
 | 
						|
                // k-th super-diagonal in e[$k].
 | 
						|
                // Compute 2-norm without under/overflow.
 | 
						|
                $e[$k] = 0;
 | 
						|
                for ($i = $k + 1; $i < $this->n; ++$i) {
 | 
						|
                    $e[$k] = hypo($e[$k], $e[$i]);
 | 
						|
                }
 | 
						|
                if ($e[$k] != 0.0) {
 | 
						|
                    if ($e[$k+1] < 0.0) {
 | 
						|
                        $e[$k] = -$e[$k];
 | 
						|
                    }
 | 
						|
                    for ($i = $k + 1; $i < $this->n; ++$i) {
 | 
						|
                        $e[$i] /= $e[$k];
 | 
						|
                    }
 | 
						|
                    $e[$k+1] += 1.0;
 | 
						|
                }
 | 
						|
                $e[$k] = -$e[$k];
 | 
						|
                if (($k+1 < $this->m) and ($e[$k] != 0.0)) {
 | 
						|
                    // Apply the transformation.
 | 
						|
                    for ($i = $k+1; $i < $this->m; ++$i) {
 | 
						|
                        $work[$i] = 0.0;
 | 
						|
                    }
 | 
						|
                    for ($j = $k+1; $j < $this->n; ++$j) {
 | 
						|
                        for ($i = $k+1; $i < $this->m; ++$i) {
 | 
						|
                            $work[$i] += $e[$j] * $A[$i][$j];
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                    for ($j = $k + 1; $j < $this->n; ++$j) {
 | 
						|
                        $t = -$e[$j] / $e[$k+1];
 | 
						|
                        for ($i = $k + 1; $i < $this->m; ++$i) {
 | 
						|
                            $A[$i][$j] += $t * $work[$i];
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                if ($wantv) {
 | 
						|
                    // Place the transformation in V for subsequent
 | 
						|
                    // back multiplication.
 | 
						|
                    for ($i = $k + 1; $i < $this->n; ++$i) {
 | 
						|
                        $this->V[$i][$k] = $e[$i];
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // Set up the final bidiagonal matrix or order p.
 | 
						|
        $p = min($this->n, $this->m + 1);
 | 
						|
        if ($nct < $this->n) {
 | 
						|
            $this->s[$nct] = $A[$nct][$nct];
 | 
						|
        }
 | 
						|
        if ($this->m < $p) {
 | 
						|
            $this->s[$p-1] = 0.0;
 | 
						|
        }
 | 
						|
        if ($nrt + 1 < $p) {
 | 
						|
            $e[$nrt] = $A[$nrt][$p-1];
 | 
						|
        }
 | 
						|
        $e[$p-1] = 0.0;
 | 
						|
        // If required, generate U.
 | 
						|
        if ($wantu) {
 | 
						|
            for ($j = $nct; $j < $nu; ++$j) {
 | 
						|
                for ($i = 0; $i < $this->m; ++$i) {
 | 
						|
                    $this->U[$i][$j] = 0.0;
 | 
						|
                }
 | 
						|
                $this->U[$j][$j] = 1.0;
 | 
						|
            }
 | 
						|
            for ($k = $nct - 1; $k >= 0; --$k) {
 | 
						|
                if ($this->s[$k] != 0.0) {
 | 
						|
                    for ($j = $k + 1; $j < $nu; ++$j) {
 | 
						|
                        $t = 0;
 | 
						|
                        for ($i = $k; $i < $this->m; ++$i) {
 | 
						|
                            $t += $this->U[$i][$k] * $this->U[$i][$j];
 | 
						|
                        }
 | 
						|
                        $t = -$t / $this->U[$k][$k];
 | 
						|
                        for ($i = $k; $i < $this->m; ++$i) {
 | 
						|
                            $this->U[$i][$j] += $t * $this->U[$i][$k];
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                    for ($i = $k; $i < $this->m; ++$i) {
 | 
						|
                        $this->U[$i][$k] = -$this->U[$i][$k];
 | 
						|
                    }
 | 
						|
                    $this->U[$k][$k] = 1.0 + $this->U[$k][$k];
 | 
						|
                    for ($i = 0; $i < $k - 1; ++$i) {
 | 
						|
                        $this->U[$i][$k] = 0.0;
 | 
						|
                    }
 | 
						|
                } else {
 | 
						|
                    for ($i = 0; $i < $this->m; ++$i) {
 | 
						|
                        $this->U[$i][$k] = 0.0;
 | 
						|
                    }
 | 
						|
                    $this->U[$k][$k] = 1.0;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // If required, generate V.
 | 
						|
        if ($wantv) {
 | 
						|
            for ($k = $this->n - 1; $k >= 0; --$k) {
 | 
						|
                if (($k < $nrt) and ($e[$k] != 0.0)) {
 | 
						|
                    for ($j = $k + 1; $j < $nu; ++$j) {
 | 
						|
                        $t = 0;
 | 
						|
                        for ($i = $k + 1; $i < $this->n; ++$i) {
 | 
						|
                            $t += $this->V[$i][$k]* $this->V[$i][$j];
 | 
						|
                        }
 | 
						|
                        $t = -$t / $this->V[$k+1][$k];
 | 
						|
                        for ($i = $k + 1; $i < $this->n; ++$i) {
 | 
						|
                            $this->V[$i][$j] += $t * $this->V[$i][$k];
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                for ($i = 0; $i < $this->n; ++$i) {
 | 
						|
                    $this->V[$i][$k] = 0.0;
 | 
						|
                }
 | 
						|
                $this->V[$k][$k] = 1.0;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // Main iteration loop for the singular values.
 | 
						|
        $pp   = $p - 1;
 | 
						|
        $iter = 0;
 | 
						|
        $eps  = pow(2.0, -52.0);
 | 
						|
 | 
						|
        while ($p > 0) {
 | 
						|
            // Here is where a test for too many iterations would go.
 | 
						|
            // This section of the program inspects for negligible
 | 
						|
            // elements in the s and e arrays.  On completion the
 | 
						|
            // variables kase and k are set as follows:
 | 
						|
            // kase = 1  if s(p) and e[k-1] are negligible and k<p
 | 
						|
            // kase = 2  if s(k) is negligible and k<p
 | 
						|
            // kase = 3  if e[k-1] is negligible, k<p, and
 | 
						|
            //           s(k), ..., s(p) are not negligible (qr step).
 | 
						|
            // kase = 4  if e(p-1) is negligible (convergence).
 | 
						|
            for ($k = $p - 2; $k >= -1; --$k) {
 | 
						|
                if ($k == -1) {
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
                if (abs($e[$k]) <= $eps * (abs($this->s[$k]) + abs($this->s[$k+1]))) {
 | 
						|
                    $e[$k] = 0.0;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if ($k == $p - 2) {
 | 
						|
                $kase = 4;
 | 
						|
            } else {
 | 
						|
                for ($ks = $p - 1; $ks >= $k; --$ks) {
 | 
						|
                    if ($ks == $k) {
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                    $t = ($ks != $p ? abs($e[$ks]) : 0.) + ($ks != $k + 1 ? abs($e[$ks-1]) : 0.);
 | 
						|
                    if (abs($this->s[$ks]) <= $eps * $t) {
 | 
						|
                        $this->s[$ks] = 0.0;
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                if ($ks == $k) {
 | 
						|
                    $kase = 3;
 | 
						|
                } elseif ($ks == $p-1) {
 | 
						|
                    $kase = 1;
 | 
						|
                } else {
 | 
						|
                    $kase = 2;
 | 
						|
                    $k = $ks;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            ++$k;
 | 
						|
 | 
						|
            // Perform the task indicated by kase.
 | 
						|
            switch ($kase) {
 | 
						|
                // Deflate negligible s(p).
 | 
						|
                case 1:
 | 
						|
                    $f = $e[$p-2];
 | 
						|
                    $e[$p-2] = 0.0;
 | 
						|
                    for ($j = $p - 2; $j >= $k; --$j) {
 | 
						|
                        $t  = hypo($this->s[$j], $f);
 | 
						|
                        $cs = $this->s[$j] / $t;
 | 
						|
                        $sn = $f / $t;
 | 
						|
                        $this->s[$j] = $t;
 | 
						|
                        if ($j != $k) {
 | 
						|
                            $f = -$sn * $e[$j-1];
 | 
						|
                            $e[$j-1] = $cs * $e[$j-1];
 | 
						|
                        }
 | 
						|
                        if ($wantv) {
 | 
						|
                            for ($i = 0; $i < $this->n; ++$i) {
 | 
						|
                                $t = $cs * $this->V[$i][$j] + $sn * $this->V[$i][$p-1];
 | 
						|
                                $this->V[$i][$p-1] = -$sn * $this->V[$i][$j] + $cs * $this->V[$i][$p-1];
 | 
						|
                                $this->V[$i][$j] = $t;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                    break;
 | 
						|
                // Split at negligible s(k).
 | 
						|
                case 2:
 | 
						|
                    $f = $e[$k-1];
 | 
						|
                    $e[$k-1] = 0.0;
 | 
						|
                    for ($j = $k; $j < $p; ++$j) {
 | 
						|
                        $t = hypo($this->s[$j], $f);
 | 
						|
                        $cs = $this->s[$j] / $t;
 | 
						|
                        $sn = $f / $t;
 | 
						|
                        $this->s[$j] = $t;
 | 
						|
                        $f = -$sn * $e[$j];
 | 
						|
                        $e[$j] = $cs * $e[$j];
 | 
						|
                        if ($wantu) {
 | 
						|
                            for ($i = 0; $i < $this->m; ++$i) {
 | 
						|
                                $t = $cs * $this->U[$i][$j] + $sn * $this->U[$i][$k-1];
 | 
						|
                                $this->U[$i][$k-1] = -$sn * $this->U[$i][$j] + $cs * $this->U[$i][$k-1];
 | 
						|
                                $this->U[$i][$j] = $t;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                    break;
 | 
						|
                // Perform one qr step.
 | 
						|
                case 3:
 | 
						|
                    // Calculate the shift.
 | 
						|
                    $scale = max(max(max(max(abs($this->s[$p-1]), abs($this->s[$p-2])), abs($e[$p-2])), abs($this->s[$k])), abs($e[$k]));
 | 
						|
                    $sp   = $this->s[$p-1] / $scale;
 | 
						|
                    $spm1 = $this->s[$p-2] / $scale;
 | 
						|
                    $epm1 = $e[$p-2] / $scale;
 | 
						|
                    $sk   = $this->s[$k] / $scale;
 | 
						|
                    $ek   = $e[$k] / $scale;
 | 
						|
                    $b    = (($spm1 + $sp) * ($spm1 - $sp) + $epm1 * $epm1) / 2.0;
 | 
						|
                    $c    = ($sp * $epm1) * ($sp * $epm1);
 | 
						|
                    $shift = 0.0;
 | 
						|
                    if (($b != 0.0) || ($c != 0.0)) {
 | 
						|
                        $shift = sqrt($b * $b + $c);
 | 
						|
                        if ($b < 0.0) {
 | 
						|
                            $shift = -$shift;
 | 
						|
                        }
 | 
						|
                        $shift = $c / ($b + $shift);
 | 
						|
                    }
 | 
						|
                    $f = ($sk + $sp) * ($sk - $sp) + $shift;
 | 
						|
                    $g = $sk * $ek;
 | 
						|
                    // Chase zeros.
 | 
						|
                    for ($j = $k; $j < $p-1; ++$j) {
 | 
						|
                        $t  = hypo($f, $g);
 | 
						|
                        $cs = $f/$t;
 | 
						|
                        $sn = $g/$t;
 | 
						|
                        if ($j != $k) {
 | 
						|
                            $e[$j-1] = $t;
 | 
						|
                        }
 | 
						|
                        $f = $cs * $this->s[$j] + $sn * $e[$j];
 | 
						|
                        $e[$j] = $cs * $e[$j] - $sn * $this->s[$j];
 | 
						|
                        $g = $sn * $this->s[$j+1];
 | 
						|
                        $this->s[$j+1] = $cs * $this->s[$j+1];
 | 
						|
                        if ($wantv) {
 | 
						|
                            for ($i = 0; $i < $this->n; ++$i) {
 | 
						|
                                $t = $cs * $this->V[$i][$j] + $sn * $this->V[$i][$j+1];
 | 
						|
                                $this->V[$i][$j+1] = -$sn * $this->V[$i][$j] + $cs * $this->V[$i][$j+1];
 | 
						|
                                $this->V[$i][$j] = $t;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                        $t = hypo($f, $g);
 | 
						|
                        $cs = $f/$t;
 | 
						|
                        $sn = $g/$t;
 | 
						|
                        $this->s[$j] = $t;
 | 
						|
                        $f = $cs * $e[$j] + $sn * $this->s[$j+1];
 | 
						|
                        $this->s[$j+1] = -$sn * $e[$j] + $cs * $this->s[$j+1];
 | 
						|
                        $g = $sn * $e[$j+1];
 | 
						|
                        $e[$j+1] = $cs * $e[$j+1];
 | 
						|
                        if ($wantu && ($j < $this->m - 1)) {
 | 
						|
                            for ($i = 0; $i < $this->m; ++$i) {
 | 
						|
                                $t = $cs * $this->U[$i][$j] + $sn * $this->U[$i][$j+1];
 | 
						|
                                $this->U[$i][$j+1] = -$sn * $this->U[$i][$j] + $cs * $this->U[$i][$j+1];
 | 
						|
                                $this->U[$i][$j] = $t;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                    $e[$p-2] = $f;
 | 
						|
                    $iter = $iter + 1;
 | 
						|
                    break;
 | 
						|
                // Convergence.
 | 
						|
                case 4:
 | 
						|
                    // Make the singular values positive.
 | 
						|
                    if ($this->s[$k] <= 0.0) {
 | 
						|
                        $this->s[$k] = ($this->s[$k] < 0.0 ? -$this->s[$k] : 0.0);
 | 
						|
                        if ($wantv) {
 | 
						|
                            for ($i = 0; $i <= $pp; ++$i) {
 | 
						|
                                $this->V[$i][$k] = -$this->V[$i][$k];
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                    // Order the singular values.
 | 
						|
                    while ($k < $pp) {
 | 
						|
                        if ($this->s[$k] >= $this->s[$k+1]) {
 | 
						|
                            break;
 | 
						|
                        }
 | 
						|
                        $t = $this->s[$k];
 | 
						|
                        $this->s[$k] = $this->s[$k+1];
 | 
						|
                        $this->s[$k+1] = $t;
 | 
						|
                        if ($wantv and ($k < $this->n - 1)) {
 | 
						|
                            for ($i = 0; $i < $this->n; ++$i) {
 | 
						|
                                $t = $this->V[$i][$k+1];
 | 
						|
                                $this->V[$i][$k+1] = $this->V[$i][$k];
 | 
						|
                                $this->V[$i][$k] = $t;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                        if ($wantu and ($k < $this->m-1)) {
 | 
						|
                            for ($i = 0; $i < $this->m; ++$i) {
 | 
						|
                                $t = $this->U[$i][$k+1];
 | 
						|
                                $this->U[$i][$k+1] = $this->U[$i][$k];
 | 
						|
                                $this->U[$i][$k] = $t;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                        ++$k;
 | 
						|
                    }
 | 
						|
                    $iter = 0;
 | 
						|
                    --$p;
 | 
						|
                    break;
 | 
						|
            } // end switch
 | 
						|
        } // end while
 | 
						|
 | 
						|
    } // end constructor
 | 
						|
 | 
						|
 | 
						|
    /**
 | 
						|
     *    Return the left singular vectors
 | 
						|
     *
 | 
						|
     *    @access public
 | 
						|
     *    @return U
 | 
						|
     */
 | 
						|
    public function getU()
 | 
						|
    {
 | 
						|
        return new Matrix($this->U, $this->m, min($this->m + 1, $this->n));
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    /**
 | 
						|
     *    Return the right singular vectors
 | 
						|
     *
 | 
						|
     *    @access public
 | 
						|
     *    @return V
 | 
						|
     */
 | 
						|
    public function getV()
 | 
						|
    {
 | 
						|
        return new Matrix($this->V);
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    /**
 | 
						|
     *    Return the one-dimensional array of singular values
 | 
						|
     *
 | 
						|
     *    @access public
 | 
						|
     *    @return diagonal of S.
 | 
						|
     */
 | 
						|
    public function getSingularValues()
 | 
						|
    {
 | 
						|
        return $this->s;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    /**
 | 
						|
     *    Return the diagonal matrix of singular values
 | 
						|
     *
 | 
						|
     *    @access public
 | 
						|
     *    @return S
 | 
						|
     */
 | 
						|
    public function getS()
 | 
						|
    {
 | 
						|
        for ($i = 0; $i < $this->n; ++$i) {
 | 
						|
            for ($j = 0; $j < $this->n; ++$j) {
 | 
						|
                $S[$i][$j] = 0.0;
 | 
						|
            }
 | 
						|
            $S[$i][$i] = $this->s[$i];
 | 
						|
        }
 | 
						|
        return new Matrix($S);
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    /**
 | 
						|
     *    Two norm
 | 
						|
     *
 | 
						|
     *    @access public
 | 
						|
     *    @return max(S)
 | 
						|
     */
 | 
						|
    public function norm2()
 | 
						|
    {
 | 
						|
        return $this->s[0];
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    /**
 | 
						|
     *    Two norm condition number
 | 
						|
     *
 | 
						|
     *    @access public
 | 
						|
     *    @return max(S)/min(S)
 | 
						|
     */
 | 
						|
    public function cond()
 | 
						|
    {
 | 
						|
        return $this->s[0] / $this->s[min($this->m, $this->n) - 1];
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    /**
 | 
						|
     *    Effective numerical matrix rank
 | 
						|
     *
 | 
						|
     *    @access public
 | 
						|
     *    @return Number of nonnegligible singular values.
 | 
						|
     */
 | 
						|
    public function rank()
 | 
						|
    {
 | 
						|
        $eps = pow(2.0, -52.0);
 | 
						|
        $tol = max($this->m, $this->n) * $this->s[0] * $eps;
 | 
						|
        $r = 0;
 | 
						|
        for ($i = 0; $i < count($this->s); ++$i) {
 | 
						|
            if ($this->s[$i] > $tol) {
 | 
						|
                ++$r;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return $r;
 | 
						|
    }
 | 
						|
}
 |