111 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			PHP
		
	
	
	
			
		
		
	
	
			111 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			PHP
		
	
	
	
<?php
 | 
						|
 | 
						|
require_once(PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/bestFitClass.php');
 | 
						|
 | 
						|
/**
 | 
						|
 * PHPExcel_Logarithmic_Best_Fit
 | 
						|
 *
 | 
						|
 * Copyright (c) 2006 - 2015 PHPExcel
 | 
						|
 *
 | 
						|
 * This library is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This library is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with this library; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | 
						|
 *
 | 
						|
 * @category   PHPExcel
 | 
						|
 * @package    PHPExcel_Shared_Trend
 | 
						|
 * @copyright  Copyright (c) 2006 - 2015 PHPExcel (http://www.codeplex.com/PHPExcel)
 | 
						|
 * @license    http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt    LGPL
 | 
						|
 * @version    ##VERSION##, ##DATE##
 | 
						|
 */
 | 
						|
class PHPExcel_Logarithmic_Best_Fit extends PHPExcel_Best_Fit
 | 
						|
{
 | 
						|
    /**
 | 
						|
     * Algorithm type to use for best-fit
 | 
						|
     * (Name of this trend class)
 | 
						|
     *
 | 
						|
     * @var    string
 | 
						|
     **/
 | 
						|
    protected $bestFitType        = 'logarithmic';
 | 
						|
 | 
						|
    /**
 | 
						|
     * Return the Y-Value for a specified value of X
 | 
						|
     *
 | 
						|
     * @param     float        $xValue            X-Value
 | 
						|
     * @return     float                        Y-Value
 | 
						|
     **/
 | 
						|
    public function getValueOfYForX($xValue)
 | 
						|
    {
 | 
						|
        return $this->getIntersect() + $this->getSlope() * log($xValue - $this->xOffset);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Return the X-Value for a specified value of Y
 | 
						|
     *
 | 
						|
     * @param     float        $yValue            Y-Value
 | 
						|
     * @return     float                        X-Value
 | 
						|
     **/
 | 
						|
    public function getValueOfXForY($yValue)
 | 
						|
    {
 | 
						|
        return exp(($yValue - $this->getIntersect()) / $this->getSlope());
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Return the Equation of the best-fit line
 | 
						|
     *
 | 
						|
     * @param     int        $dp        Number of places of decimal precision to display
 | 
						|
     * @return     string
 | 
						|
     **/
 | 
						|
    public function getEquation($dp = 0)
 | 
						|
    {
 | 
						|
        $slope = $this->getSlope($dp);
 | 
						|
        $intersect = $this->getIntersect($dp);
 | 
						|
 | 
						|
        return 'Y = '.$intersect.' + '.$slope.' * log(X)';
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Execute the regression and calculate the goodness of fit for a set of X and Y data values
 | 
						|
     *
 | 
						|
     * @param     float[]    $yValues    The set of Y-values for this regression
 | 
						|
     * @param     float[]    $xValues    The set of X-values for this regression
 | 
						|
     * @param     boolean    $const
 | 
						|
     */
 | 
						|
    private function logarithmicRegression($yValues, $xValues, $const)
 | 
						|
    {
 | 
						|
        foreach ($xValues as &$value) {
 | 
						|
            if ($value < 0.0) {
 | 
						|
                $value = 0 - log(abs($value));
 | 
						|
            } elseif ($value > 0.0) {
 | 
						|
                $value = log($value);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        unset($value);
 | 
						|
 | 
						|
        $this->leastSquareFit($yValues, $xValues, $const);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Define the regression and calculate the goodness of fit for a set of X and Y data values
 | 
						|
     *
 | 
						|
     * @param    float[]        $yValues    The set of Y-values for this regression
 | 
						|
     * @param    float[]        $xValues    The set of X-values for this regression
 | 
						|
     * @param    boolean        $const
 | 
						|
     */
 | 
						|
    public function __construct($yValues, $xValues = array(), $const = true)
 | 
						|
    {
 | 
						|
        if (parent::__construct($yValues, $xValues) !== false) {
 | 
						|
            $this->logarithmicRegression($yValues, $xValues, $const);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 |