426 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			PHP
		
	
	
	
			
		
		
	
	
			426 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			PHP
		
	
	
	
<?php
 | 
						|
 | 
						|
/**
 | 
						|
 * PHPExcel_Best_Fit
 | 
						|
 *
 | 
						|
 * Copyright (c) 2006 - 2015 PHPExcel
 | 
						|
 *
 | 
						|
 * This library is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This library is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with this library; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | 
						|
 *
 | 
						|
 * @category   PHPExcel
 | 
						|
 * @package    PHPExcel_Shared_Trend
 | 
						|
 * @copyright  Copyright (c) 2006 - 2015 PHPExcel (http://www.codeplex.com/PHPExcel)
 | 
						|
 * @license    http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt    LGPL
 | 
						|
 * @version    ##VERSION##, ##DATE##
 | 
						|
 */
 | 
						|
class PHPExcel_Best_Fit
 | 
						|
{
 | 
						|
    /**
 | 
						|
     * Indicator flag for a calculation error
 | 
						|
     *
 | 
						|
     * @var    boolean
 | 
						|
     **/
 | 
						|
    protected $error = false;
 | 
						|
 | 
						|
    /**
 | 
						|
     * Algorithm type to use for best-fit
 | 
						|
     *
 | 
						|
     * @var    string
 | 
						|
     **/
 | 
						|
    protected $bestFitType = 'undetermined';
 | 
						|
 | 
						|
    /**
 | 
						|
     * Number of entries in the sets of x- and y-value arrays
 | 
						|
     *
 | 
						|
     * @var    int
 | 
						|
     **/
 | 
						|
    protected $valueCount = 0;
 | 
						|
 | 
						|
    /**
 | 
						|
     * X-value dataseries of values
 | 
						|
     *
 | 
						|
     * @var    float[]
 | 
						|
     **/
 | 
						|
    protected $xValues = array();
 | 
						|
 | 
						|
    /**
 | 
						|
     * Y-value dataseries of values
 | 
						|
     *
 | 
						|
     * @var    float[]
 | 
						|
     **/
 | 
						|
    protected $yValues = array();
 | 
						|
 | 
						|
    /**
 | 
						|
     * Flag indicating whether values should be adjusted to Y=0
 | 
						|
     *
 | 
						|
     * @var    boolean
 | 
						|
     **/
 | 
						|
    protected $adjustToZero = false;
 | 
						|
 | 
						|
    /**
 | 
						|
     * Y-value series of best-fit values
 | 
						|
     *
 | 
						|
     * @var    float[]
 | 
						|
     **/
 | 
						|
    protected $yBestFitValues = array();
 | 
						|
 | 
						|
    protected $goodnessOfFit = 1;
 | 
						|
 | 
						|
    protected $stdevOfResiduals = 0;
 | 
						|
 | 
						|
    protected $covariance = 0;
 | 
						|
 | 
						|
    protected $correlation = 0;
 | 
						|
 | 
						|
    protected $SSRegression = 0;
 | 
						|
 | 
						|
    protected $SSResiduals = 0;
 | 
						|
 | 
						|
    protected $DFResiduals = 0;
 | 
						|
 | 
						|
    protected $f = 0;
 | 
						|
 | 
						|
    protected $slope = 0;
 | 
						|
 | 
						|
    protected $slopeSE = 0;
 | 
						|
 | 
						|
    protected $intersect = 0;
 | 
						|
 | 
						|
    protected $intersectSE = 0;
 | 
						|
 | 
						|
    protected $xOffset = 0;
 | 
						|
 | 
						|
    protected $yOffset = 0;
 | 
						|
 | 
						|
 | 
						|
    public function getError()
 | 
						|
    {
 | 
						|
        return $this->error;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    public function getBestFitType()
 | 
						|
    {
 | 
						|
        return $this->bestFitType;
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Return the Y-Value for a specified value of X
 | 
						|
     *
 | 
						|
     * @param     float        $xValue            X-Value
 | 
						|
     * @return     float                        Y-Value
 | 
						|
     */
 | 
						|
    public function getValueOfYForX($xValue)
 | 
						|
    {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Return the X-Value for a specified value of Y
 | 
						|
     *
 | 
						|
     * @param     float        $yValue            Y-Value
 | 
						|
     * @return     float                        X-Value
 | 
						|
     */
 | 
						|
    public function getValueOfXForY($yValue)
 | 
						|
    {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Return the original set of X-Values
 | 
						|
     *
 | 
						|
     * @return     float[]                X-Values
 | 
						|
     */
 | 
						|
    public function getXValues()
 | 
						|
    {
 | 
						|
        return $this->xValues;
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Return the Equation of the best-fit line
 | 
						|
     *
 | 
						|
     * @param     int        $dp        Number of places of decimal precision to display
 | 
						|
     * @return     string
 | 
						|
     */
 | 
						|
    public function getEquation($dp = 0)
 | 
						|
    {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Return the Slope of the line
 | 
						|
     *
 | 
						|
     * @param     int        $dp        Number of places of decimal precision to display
 | 
						|
     * @return     string
 | 
						|
     */
 | 
						|
    public function getSlope($dp = 0)
 | 
						|
    {
 | 
						|
        if ($dp != 0) {
 | 
						|
            return round($this->slope, $dp);
 | 
						|
        }
 | 
						|
        return $this->slope;
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Return the standard error of the Slope
 | 
						|
     *
 | 
						|
     * @param     int        $dp        Number of places of decimal precision to display
 | 
						|
     * @return     string
 | 
						|
     */
 | 
						|
    public function getSlopeSE($dp = 0)
 | 
						|
    {
 | 
						|
        if ($dp != 0) {
 | 
						|
            return round($this->slopeSE, $dp);
 | 
						|
        }
 | 
						|
        return $this->slopeSE;
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Return the Value of X where it intersects Y = 0
 | 
						|
     *
 | 
						|
     * @param     int        $dp        Number of places of decimal precision to display
 | 
						|
     * @return     string
 | 
						|
     */
 | 
						|
    public function getIntersect($dp = 0)
 | 
						|
    {
 | 
						|
        if ($dp != 0) {
 | 
						|
            return round($this->intersect, $dp);
 | 
						|
        }
 | 
						|
        return $this->intersect;
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Return the standard error of the Intersect
 | 
						|
     *
 | 
						|
     * @param     int        $dp        Number of places of decimal precision to display
 | 
						|
     * @return     string
 | 
						|
     */
 | 
						|
    public function getIntersectSE($dp = 0)
 | 
						|
    {
 | 
						|
        if ($dp != 0) {
 | 
						|
            return round($this->intersectSE, $dp);
 | 
						|
        }
 | 
						|
        return $this->intersectSE;
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Return the goodness of fit for this regression
 | 
						|
     *
 | 
						|
     * @param     int        $dp        Number of places of decimal precision to return
 | 
						|
     * @return     float
 | 
						|
     */
 | 
						|
    public function getGoodnessOfFit($dp = 0)
 | 
						|
    {
 | 
						|
        if ($dp != 0) {
 | 
						|
            return round($this->goodnessOfFit, $dp);
 | 
						|
        }
 | 
						|
        return $this->goodnessOfFit;
 | 
						|
    }
 | 
						|
 | 
						|
    public function getGoodnessOfFitPercent($dp = 0)
 | 
						|
    {
 | 
						|
        if ($dp != 0) {
 | 
						|
            return round($this->goodnessOfFit * 100, $dp);
 | 
						|
        }
 | 
						|
        return $this->goodnessOfFit * 100;
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Return the standard deviation of the residuals for this regression
 | 
						|
     *
 | 
						|
     * @param     int        $dp        Number of places of decimal precision to return
 | 
						|
     * @return     float
 | 
						|
     */
 | 
						|
    public function getStdevOfResiduals($dp = 0)
 | 
						|
    {
 | 
						|
        if ($dp != 0) {
 | 
						|
            return round($this->stdevOfResiduals, $dp);
 | 
						|
        }
 | 
						|
        return $this->stdevOfResiduals;
 | 
						|
    }
 | 
						|
 | 
						|
    public function getSSRegression($dp = 0)
 | 
						|
    {
 | 
						|
        if ($dp != 0) {
 | 
						|
            return round($this->SSRegression, $dp);
 | 
						|
        }
 | 
						|
        return $this->SSRegression;
 | 
						|
    }
 | 
						|
 | 
						|
    public function getSSResiduals($dp = 0)
 | 
						|
    {
 | 
						|
        if ($dp != 0) {
 | 
						|
            return round($this->SSResiduals, $dp);
 | 
						|
        }
 | 
						|
        return $this->SSResiduals;
 | 
						|
    }
 | 
						|
 | 
						|
    public function getDFResiduals($dp = 0)
 | 
						|
    {
 | 
						|
        if ($dp != 0) {
 | 
						|
            return round($this->DFResiduals, $dp);
 | 
						|
        }
 | 
						|
        return $this->DFResiduals;
 | 
						|
    }
 | 
						|
 | 
						|
    public function getF($dp = 0)
 | 
						|
    {
 | 
						|
        if ($dp != 0) {
 | 
						|
            return round($this->f, $dp);
 | 
						|
        }
 | 
						|
        return $this->f;
 | 
						|
    }
 | 
						|
 | 
						|
    public function getCovariance($dp = 0)
 | 
						|
    {
 | 
						|
        if ($dp != 0) {
 | 
						|
            return round($this->covariance, $dp);
 | 
						|
        }
 | 
						|
        return $this->covariance;
 | 
						|
    }
 | 
						|
 | 
						|
    public function getCorrelation($dp = 0)
 | 
						|
    {
 | 
						|
        if ($dp != 0) {
 | 
						|
            return round($this->correlation, $dp);
 | 
						|
        }
 | 
						|
        return $this->correlation;
 | 
						|
    }
 | 
						|
 | 
						|
    public function getYBestFitValues()
 | 
						|
    {
 | 
						|
        return $this->yBestFitValues;
 | 
						|
    }
 | 
						|
 | 
						|
    protected function calculateGoodnessOfFit($sumX, $sumY, $sumX2, $sumY2, $sumXY, $meanX, $meanY, $const)
 | 
						|
    {
 | 
						|
        $SSres = $SScov = $SScor = $SStot = $SSsex = 0.0;
 | 
						|
        foreach ($this->xValues as $xKey => $xValue) {
 | 
						|
            $bestFitY = $this->yBestFitValues[$xKey] = $this->getValueOfYForX($xValue);
 | 
						|
 | 
						|
            $SSres += ($this->yValues[$xKey] - $bestFitY) * ($this->yValues[$xKey] - $bestFitY);
 | 
						|
            if ($const) {
 | 
						|
                $SStot += ($this->yValues[$xKey] - $meanY) * ($this->yValues[$xKey] - $meanY);
 | 
						|
            } else {
 | 
						|
                $SStot += $this->yValues[$xKey] * $this->yValues[$xKey];
 | 
						|
            }
 | 
						|
            $SScov += ($this->xValues[$xKey] - $meanX) * ($this->yValues[$xKey] - $meanY);
 | 
						|
            if ($const) {
 | 
						|
                $SSsex += ($this->xValues[$xKey] - $meanX) * ($this->xValues[$xKey] - $meanX);
 | 
						|
            } else {
 | 
						|
                $SSsex += $this->xValues[$xKey] * $this->xValues[$xKey];
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        $this->SSResiduals = $SSres;
 | 
						|
        $this->DFResiduals = $this->valueCount - 1 - $const;
 | 
						|
 | 
						|
        if ($this->DFResiduals == 0.0) {
 | 
						|
            $this->stdevOfResiduals = 0.0;
 | 
						|
        } else {
 | 
						|
            $this->stdevOfResiduals = sqrt($SSres / $this->DFResiduals);
 | 
						|
        }
 | 
						|
        if (($SStot == 0.0) || ($SSres == $SStot)) {
 | 
						|
            $this->goodnessOfFit = 1;
 | 
						|
        } else {
 | 
						|
            $this->goodnessOfFit = 1 - ($SSres / $SStot);
 | 
						|
        }
 | 
						|
 | 
						|
        $this->SSRegression = $this->goodnessOfFit * $SStot;
 | 
						|
        $this->covariance = $SScov / $this->valueCount;
 | 
						|
        $this->correlation = ($this->valueCount * $sumXY - $sumX * $sumY) / sqrt(($this->valueCount * $sumX2 - pow($sumX, 2)) * ($this->valueCount * $sumY2 - pow($sumY, 2)));
 | 
						|
        $this->slopeSE = $this->stdevOfResiduals / sqrt($SSsex);
 | 
						|
        $this->intersectSE = $this->stdevOfResiduals * sqrt(1 / ($this->valueCount - ($sumX * $sumX) / $sumX2));
 | 
						|
        if ($this->SSResiduals != 0.0) {
 | 
						|
            if ($this->DFResiduals == 0.0) {
 | 
						|
                $this->f = 0.0;
 | 
						|
            } else {
 | 
						|
                $this->f = $this->SSRegression / ($this->SSResiduals / $this->DFResiduals);
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            if ($this->DFResiduals == 0.0) {
 | 
						|
                $this->f = 0.0;
 | 
						|
            } else {
 | 
						|
                $this->f = $this->SSRegression / $this->DFResiduals;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    protected function leastSquareFit($yValues, $xValues, $const)
 | 
						|
    {
 | 
						|
        // calculate sums
 | 
						|
        $x_sum = array_sum($xValues);
 | 
						|
        $y_sum = array_sum($yValues);
 | 
						|
        $meanX = $x_sum / $this->valueCount;
 | 
						|
        $meanY = $y_sum / $this->valueCount;
 | 
						|
        $mBase = $mDivisor = $xx_sum = $xy_sum = $yy_sum = 0.0;
 | 
						|
        for ($i = 0; $i < $this->valueCount; ++$i) {
 | 
						|
            $xy_sum += $xValues[$i] * $yValues[$i];
 | 
						|
            $xx_sum += $xValues[$i] * $xValues[$i];
 | 
						|
            $yy_sum += $yValues[$i] * $yValues[$i];
 | 
						|
 | 
						|
            if ($const) {
 | 
						|
                $mBase += ($xValues[$i] - $meanX) * ($yValues[$i] - $meanY);
 | 
						|
                $mDivisor += ($xValues[$i] - $meanX) * ($xValues[$i] - $meanX);
 | 
						|
            } else {
 | 
						|
                $mBase += $xValues[$i] * $yValues[$i];
 | 
						|
                $mDivisor += $xValues[$i] * $xValues[$i];
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // calculate slope
 | 
						|
//        $this->slope = (($this->valueCount * $xy_sum) - ($x_sum * $y_sum)) / (($this->valueCount * $xx_sum) - ($x_sum * $x_sum));
 | 
						|
        $this->slope = $mBase / $mDivisor;
 | 
						|
 | 
						|
        // calculate intersect
 | 
						|
//        $this->intersect = ($y_sum - ($this->slope * $x_sum)) / $this->valueCount;
 | 
						|
        if ($const) {
 | 
						|
            $this->intersect = $meanY - ($this->slope * $meanX);
 | 
						|
        } else {
 | 
						|
            $this->intersect = 0;
 | 
						|
        }
 | 
						|
 | 
						|
        $this->calculateGoodnessOfFit($x_sum, $y_sum, $xx_sum, $yy_sum, $xy_sum, $meanX, $meanY, $const);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Define the regression
 | 
						|
     *
 | 
						|
     * @param    float[]        $yValues    The set of Y-values for this regression
 | 
						|
     * @param    float[]        $xValues    The set of X-values for this regression
 | 
						|
     * @param    boolean        $const
 | 
						|
     */
 | 
						|
    public function __construct($yValues, $xValues = array(), $const = true)
 | 
						|
    {
 | 
						|
        //    Calculate number of points
 | 
						|
        $nY = count($yValues);
 | 
						|
        $nX = count($xValues);
 | 
						|
 | 
						|
        //    Define X Values if necessary
 | 
						|
        if ($nX == 0) {
 | 
						|
            $xValues = range(1, $nY);
 | 
						|
            $nX = $nY;
 | 
						|
        } elseif ($nY != $nX) {
 | 
						|
            //    Ensure both arrays of points are the same size
 | 
						|
            $this->error = true;
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
 | 
						|
        $this->valueCount = $nY;
 | 
						|
        $this->xValues = $xValues;
 | 
						|
        $this->yValues = $yValues;
 | 
						|
    }
 | 
						|
}
 |