Created ZIP
This commit is contained in:
parent
1bf96cbdb0
commit
969878593e
Binary file not shown.
|
@ -0,0 +1,50 @@
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
xmin, xmax, xsteps = -10, 10, 0.1
|
||||||
|
plotLegend = []
|
||||||
|
|
||||||
|
def showPlot():
|
||||||
|
plt.xlim(-11, 11)
|
||||||
|
plt.xticks(np.arange(xmin, xmax + xsteps, 1.0))
|
||||||
|
plt.xlabel("x")
|
||||||
|
plt.ylim(-1300, 1300)
|
||||||
|
plt.ylabel("y")
|
||||||
|
plt.grid(markevery=1)
|
||||||
|
plt.legend(plotLegend)
|
||||||
|
plt.title("Aufgabe 1")
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
def function_f(x):
|
||||||
|
return x ** 5 - 5 * x ** 4 - 30 * x ** 3 + 110 * x ** 2 + 29 * x - 105
|
||||||
|
|
||||||
|
def derivative_f(x):
|
||||||
|
return 5 * x ** 4 - 20 * x ** 3 - 90 * x ** 2 + 220 * x + 29
|
||||||
|
|
||||||
|
def integral_f(x):
|
||||||
|
c = 0
|
||||||
|
return (1/6) * x ** 6 - x ** 5 - (30/4) * x ** 4 + (110/3) * x ** 3 + (29/2) * x ** 2 - 105 * x + c
|
||||||
|
|
||||||
|
def plot_function_f():
|
||||||
|
x = np.arange(xmin, xmax + xsteps, xsteps)
|
||||||
|
f = np.array(function_f(x))
|
||||||
|
plt.plot(x, f)
|
||||||
|
plotLegend.append('f(x)')
|
||||||
|
|
||||||
|
def plot_derivative_f():
|
||||||
|
x = np.arange(xmin, xmax + xsteps, xsteps)
|
||||||
|
f = np.array(derivative_f(x))
|
||||||
|
plt.plot(x, f)
|
||||||
|
plotLegend.append('f\'(x)')
|
||||||
|
|
||||||
|
def plot_integral_f():
|
||||||
|
x = np.arange(xmin, xmax + xsteps, xsteps)
|
||||||
|
f = np.array(integral_f(x))
|
||||||
|
plt.plot(x, f)
|
||||||
|
plotLegend.append('F(x)')
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
plot_function_f()
|
||||||
|
plot_derivative_f()
|
||||||
|
plot_integral_f()
|
||||||
|
showPlot()
|
|
@ -0,0 +1,61 @@
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
plotLegend = []
|
||||||
|
|
||||||
|
def showPlot(xmin, xmax, xsteps):
|
||||||
|
plt.xlim(xmin - 1, xmax + 1)
|
||||||
|
plt.xticks(np.arange(xmin, xmax + xsteps, 1.0))
|
||||||
|
plt.xlabel("x")
|
||||||
|
plt.ylim(-1300, 1300)
|
||||||
|
plt.ylabel("y")
|
||||||
|
plt.grid(markevery=1)
|
||||||
|
plt.legend(plotLegend)
|
||||||
|
plt.title("Aufgabe 2")
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
def polynom_function(a, x): #a = coefficients, x = values to calculate
|
||||||
|
a = np.squeeze(np.asarray(a))
|
||||||
|
p = np.array([])
|
||||||
|
for x_value in x:
|
||||||
|
result = 0
|
||||||
|
for power, coefficient in enumerate(a):
|
||||||
|
result += coefficient * x_value ** power
|
||||||
|
p = np.append(p, result)
|
||||||
|
return p
|
||||||
|
|
||||||
|
def derivative_f(a):
|
||||||
|
a = np.squeeze(np.asarray(a))
|
||||||
|
result = np.array([])
|
||||||
|
for i in range(1, len(a)):
|
||||||
|
result = np.append(result, a[i] * i)
|
||||||
|
return result
|
||||||
|
|
||||||
|
def integral_f(a):
|
||||||
|
a = np.squeeze(np.asarray(a))
|
||||||
|
c = 0
|
||||||
|
result = np.array([c])
|
||||||
|
for i in range(0, len(a)):
|
||||||
|
result = np.append(result, a[i] / (i + 1))
|
||||||
|
return result
|
||||||
|
|
||||||
|
def plot_function(x, y, legendString):
|
||||||
|
plt.plot(x, y)
|
||||||
|
plotLegend.append(legendString)
|
||||||
|
|
||||||
|
def is_valid_vector(vector):
|
||||||
|
shape = np.shape(vector)
|
||||||
|
if(len(shape) == 2):
|
||||||
|
return (shape[0] == 1 and shape[1] >= 1) or (shape[0] >= 1 and shape[1] == 1)
|
||||||
|
else:
|
||||||
|
return False
|
||||||
|
|
||||||
|
def schenk_brandeberger_Aufg2(a, xmin, xmax):
|
||||||
|
if not is_valid_vector(a):
|
||||||
|
raise Exception('Fehler! a ist kein gültiger Spalten- oder Zeilenvektor!')
|
||||||
|
xsteps = abs(xmax/100.0)
|
||||||
|
x = np.arange(xmin, xmax + xsteps, xsteps)
|
||||||
|
p = polynom_function(a, x)
|
||||||
|
dp = polynom_function(derivative_f(a), x)
|
||||||
|
pint = polynom_function(integral_f(a), x)
|
||||||
|
return(x,p,dp,pint)
|
|
@ -0,0 +1,21 @@
|
||||||
|
import numpy as np
|
||||||
|
from schenk_brandeberger_S1_Aufg2 import schenk_brandeberger_Aufg2, plot_function, showPlot
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
#coefficients_task_1 = np.array([-105, 29, 110, -30, -5, 1]) #falsches Format
|
||||||
|
#coefficients_task_1 = np.array([[-105, 29, 110, -30, -5, 1]]) #Zeilenvektor
|
||||||
|
coefficients_task_1 = np.array([[-105], [29], [110], [-30], [-5], [1]]) #Spalten Vektor
|
||||||
|
xmin = -10
|
||||||
|
xmax = 10
|
||||||
|
[x,p,dp,pint] = schenk_brandeberger_Aufg2(coefficients_task_1, xmin, xmax)
|
||||||
|
|
||||||
|
print("x:\n", x)
|
||||||
|
print("p:\n", p)
|
||||||
|
print("dp:\n", dp)
|
||||||
|
print("pint:\n", pint)
|
||||||
|
|
||||||
|
plot_function(x, p, 'f(x)')
|
||||||
|
plot_function(x, dp, 'f\'(x)')
|
||||||
|
plot_function(x, pint, 'F(x)')
|
||||||
|
|
||||||
|
showPlot(xmin, xmax, abs(xmax/100.0))
|
|
@ -0,0 +1,73 @@
|
||||||
|
import timeit
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
def fact_rec(n):
|
||||||
|
# y = fact_rec(n) berechnet die Fakultät von n als fact_rec(n) = n * fact_rec(n -1) mit fact_rec(0) = 1
|
||||||
|
# Fehler, falls n < 0 oder nicht ganzzahlig
|
||||||
|
if n < 0 or np.trunc(n) != n:
|
||||||
|
raise Exception('The factorial is defined only for positive integers')
|
||||||
|
if n <=1:
|
||||||
|
return 1
|
||||||
|
else:
|
||||||
|
return n*fact_rec(n-1)
|
||||||
|
|
||||||
|
def fact_for(n):
|
||||||
|
if n < 0 or np.trunc(n) != n:
|
||||||
|
raise Exception('The factorial is defined only for positive integers')
|
||||||
|
result = 1
|
||||||
|
for i in range(1, n + 1):
|
||||||
|
result *= i
|
||||||
|
return result
|
||||||
|
|
||||||
|
def test_same_value(maxn):
|
||||||
|
test_successful = True
|
||||||
|
for n in range(maxn + 1):
|
||||||
|
if(fact_rec(n)) != fact_for(n):
|
||||||
|
print("Test (same value) failed at: ", n)
|
||||||
|
test_successful = False
|
||||||
|
if test_successful:
|
||||||
|
print("Test (same value) successful. Max n: ", maxn)
|
||||||
|
return test_successful
|
||||||
|
|
||||||
|
def compaire_execution_times(n, execution_count):
|
||||||
|
print("Starting Test to comaire execution times:")
|
||||||
|
time_rec = np.mean(np.array(timeit.repeat("fact_rec(" + str(n) + ")", "from __main__ import fact_rec", number=execution_count)))
|
||||||
|
time_for = np.mean(np.array(timeit.repeat("fact_for(" + str(n) + ")", "from __main__ import fact_for", number=execution_count)))
|
||||||
|
factor = time_rec / time_for
|
||||||
|
print("time recursively: ", time_rec)
|
||||||
|
print("time with for loop: ", time_for)
|
||||||
|
print("execution with for loop is ", factor, " times faster.")
|
||||||
|
|
||||||
|
# mit einer For-Schleife ist die Ausführung etwa 9 mal schneller. Wenn die Fakultät rekursiv berechnet wird muss die Funktion n mal aufgerufen werden
|
||||||
|
# und es müssen entsprechend viele zwischenergebnisse gespeichert werden bis die Berechnung abgeschlossen ist.
|
||||||
|
# Mit einer For-Schleife kann jeweils das letzte zwischenergebnis verworfen / überschrieben werden.
|
||||||
|
|
||||||
|
def find_upper_limit_int(min_n, max_n):
|
||||||
|
print("Starting Test upper Limit with int:")
|
||||||
|
for n in range(min_n, max_n + 1):
|
||||||
|
try:
|
||||||
|
print(n, ": ", fact_for(n))
|
||||||
|
except Exception as e:
|
||||||
|
print("Failed at n = ", n, "Error Message:\n", str(e))
|
||||||
|
|
||||||
|
# Für Integer gibt es keine Obergrenze. Die Werte werden berechnet.
|
||||||
|
|
||||||
|
def find_upper_limit_float(min_n, max_n):
|
||||||
|
print("Starting Test upper Limit with float:")
|
||||||
|
for n in range(min_n, max_n + 1):
|
||||||
|
try:
|
||||||
|
print(n, ": ", float(fact_for(n)))
|
||||||
|
except Exception as e:
|
||||||
|
print("Failed at n = ", n, "Error Message:\n", str(e))
|
||||||
|
|
||||||
|
# Für Float gibt es eine Obergrenze. Wird diese überschritten können die Werte nicht mehr als Float ausgegeben werden.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
test_same_value(50)
|
||||||
|
compaire_execution_times(500, 100)
|
||||||
|
find_upper_limit_int(190, 200)
|
||||||
|
find_upper_limit_float(170, 171)
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue