77 lines
2.1 KiB
Python
77 lines
2.1 KiB
Python
|
import numpy as np
|
||
|
import time
|
||
|
from Schenk_Brandenberger_S10_Aufg3 import *
|
||
|
from Gauss_Algorithm import *
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
#3b
|
||
|
dim = 3000
|
||
|
A = np.diag( np.diag( np.ones( ( dim , dim ) )*4000 ) )+ np.ones( ( dim , dim ) )
|
||
|
dum1 = np.arange( 1 , np.int32( dim /2+1) , dtype = np.float64 ).reshape( ( np.int32( dim / 2 ) , 1 ) )
|
||
|
dum2 = np.arange( np.int32( dim / 2 ) ,0 , -1 , dtype=np.float64 ).reshape( ( np.int32( dim / 2 ) , 1 ) )
|
||
|
x = np.append( dum1 , dum2 , axis=0)
|
||
|
b = A@x
|
||
|
x0 = np.zeros( ( dim , 1 ) )
|
||
|
tol = 1e-4
|
||
|
|
||
|
startLinalgSolve = time.time()
|
||
|
x_linalg_solve = np.linalg.solve(A,b)
|
||
|
stoppLinalgSolve = time.time()
|
||
|
|
||
|
startJacobi = time.time()
|
||
|
[x_jacobi, n, n2] = Schenk_Brandenberger_S10_Aufg3(A,b,x0,tol,0)
|
||
|
stoppJacobi = time.time()
|
||
|
|
||
|
startGaussSeidel = time.time()
|
||
|
[x_gauss_seidel, n, n2] = Schenk_Brandenberger_S10_Aufg3(A,b,x0,tol,0)
|
||
|
stoppGaussSeidel = time.time()
|
||
|
|
||
|
startGauss = time.time()
|
||
|
x_gauss = Witschi_Floian_S6_Aufg2(A,b)[2]
|
||
|
stoppGauss = time.time()
|
||
|
|
||
|
print("***********Time Estimation***********")
|
||
|
print("Time for np.linalg.solve:")
|
||
|
print(stoppLinalgSolve-startLinalgSolve)
|
||
|
print("Time for Jacobi:")
|
||
|
print(stoppJacobi-startJacobi)
|
||
|
print("Time for Gauss-Seidel:")
|
||
|
print(stoppGaussSeidel-startGaussSeidel)
|
||
|
print("Time for Gauss:")
|
||
|
print(stoppGauss-startGauss)
|
||
|
|
||
|
|
||
|
#In this algorithm for Jacobi and Gauss-Seidel is the B calculated every single time
|
||
|
""" Time for np.linalg.solve:
|
||
|
0.6146464347839355
|
||
|
Time for Jacobi:
|
||
|
319.44120621681213
|
||
|
Time for Gauss-Seidel:
|
||
|
307.4256772994995
|
||
|
Time for Gauss:
|
||
|
95.12803220748901 """
|
||
|
|
||
|
#In this algorithm for Jacobi and Gauss-Seidel is the B calculated one time
|
||
|
""" Time for np.linalg.solve:
|
||
|
0.5016989707946777
|
||
|
Time for Jacobi:
|
||
|
18.02965211868286
|
||
|
Time for Gauss-Seidel:
|
||
|
17.64187240600586
|
||
|
Time for Gauss:
|
||
|
105.31756782531738 """
|
||
|
|
||
|
print(x_gauss)
|
||
|
|
||
|
#3c
|
||
|
#x_axis = np.array(["x0","x1","x2"])
|
||
|
#plt.plot(x_axis, x_linalg_solve)
|
||
|
x_axis = np.arange(dim)
|
||
|
plt.plot(x_axis, x_gauss_seidel-x)
|
||
|
plt.plot(x_axis, x_jacobi-x)
|
||
|
plt.plot(x_axis, x_gauss-x)
|
||
|
plt.plot(x_axis, x_linalg_solve-x)
|
||
|
plt.legend(["Gauss Seidel", "Jacobi", "Gauss", "Linalg"])
|
||
|
plt.show()
|
||
|
|
||
|
#Das Gauss-Verfahren ist genauer wie das Jacobi und Gauss-Seidel Verfahren
|