added classes aufg3
This commit is contained in:
parent
6c893b33b0
commit
2492a6ec33
|
@ -0,0 +1,66 @@
|
|||
import numpy as np
|
||||
|
||||
|
||||
def Single_Jacobi_Iteration(B, c, xn):
|
||||
return B @ xn + c
|
||||
|
||||
|
||||
def Single_Gauss_Seidel_Iteration(B, c, xn):
|
||||
return B @ xn + c
|
||||
|
||||
|
||||
def A_Priori_Estimation(B, x0, x1, tol):
|
||||
return np.log((tol / np.linalg.norm((x1 - x0), np.inf) * (1 - np.linalg.norm(B, np.inf)))) / np.log(
|
||||
np.linalg.norm(B, np.inf))
|
||||
|
||||
|
||||
def A_Posteriori_Estimation(B, xn, xn_minus_one):
|
||||
return (np.linalg.norm(B, np.inf) / (1 - np.linalg.norm(B, np.inf))) * np.linalg.norm(xn - xn_minus_one)
|
||||
|
||||
|
||||
def Schenk_Brandenberger_S10_Aufg3a(A, b, x0, tol, opt):
|
||||
A = A.astype("float64")
|
||||
b = b.astype("float64")
|
||||
x0 = x0.astype("float64")
|
||||
x1 = np.copy(x0)
|
||||
L = np.tril(A, k=-1)
|
||||
D = np.diag(np.diag(A))
|
||||
R = np.triu(A, k=1)
|
||||
n = 1
|
||||
|
||||
if opt == 0:
|
||||
B = -np.linalg.inv(D) @ (L + R)
|
||||
c = np.linalg.inv(D) @ b
|
||||
x1 = Single_Jacobi_Iteration(B, c, x0)
|
||||
elif opt == 1:
|
||||
B = -np.linalg.inv(D + L) @ R
|
||||
c = np.linalg.inv(D + L) @ b
|
||||
x1 = Single_Gauss_Seidel_Iteration(B, c, x0)
|
||||
xn = np.copy(x1)
|
||||
xn_minus_one = np.copy(x0)
|
||||
# a-priori Abschätzung
|
||||
n2 = A_Priori_Estimation(B, x0, x1, tol)
|
||||
|
||||
while tol < A_Posteriori_Estimation(B, xn, xn_minus_one):
|
||||
xn_minus_one = np.copy(xn)
|
||||
if opt == 0:
|
||||
xn = Single_Jacobi_Iteration(B, c, xn)
|
||||
elif opt == 1:
|
||||
xn = Single_Gauss_Seidel_Iteration(B, c, xn)
|
||||
n = n + 1
|
||||
return (xn, n, n2)
|
||||
|
||||
|
||||
A = np.array([[8, 5, 2], [5, 9, 1], [4, 2, 7]])
|
||||
b = np.array([[19], [5], [34]])
|
||||
x0 = np.array([[1], [-1], [3]])
|
||||
opt = 1 # 0 is Jacobi; 1 is Gauss-Seidel
|
||||
|
||||
[xn, n, n2] = Schenk_Brandenberger_S10_Aufg3a(A, b, x0, 0.0001, opt)
|
||||
|
||||
print("Solution vector xn:")
|
||||
print(xn)
|
||||
print("Number of iterations:")
|
||||
print(n)
|
||||
print("Used steps with a priori:")
|
||||
print(n2)
|
|
@ -0,0 +1,77 @@
|
|||
import numpy as np
|
||||
import time
|
||||
from Schenk_Brandenberger_S10_Aufg3 import *
|
||||
from Gauss_Algorithm import *
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
#3b
|
||||
dim = 3000
|
||||
A = np.diag( np.diag( np.ones( ( dim , dim ) )*4000 ) )+ np.ones( ( dim , dim ) )
|
||||
dum1 = np.arange( 1 , np.int32( dim /2+1) , dtype = np.float64 ).reshape( ( np.int32( dim / 2 ) , 1 ) )
|
||||
dum2 = np.arange( np.int32( dim / 2 ) ,0 , -1 , dtype=np.float64 ).reshape( ( np.int32( dim / 2 ) , 1 ) )
|
||||
x = np.append( dum1 , dum2 , axis=0)
|
||||
b = A@x
|
||||
x0 = np.zeros( ( dim , 1 ) )
|
||||
tol = 1e-4
|
||||
|
||||
startLinalgSolve = time.time()
|
||||
x_linalg_solve = np.linalg.solve(A,b)
|
||||
stoppLinalgSolve = time.time()
|
||||
|
||||
startJacobi = time.time()
|
||||
[x_jacobi, n, n2] = Schenk_Brandenberger_S10_Aufg3(A,b,x0,tol,0)
|
||||
stoppJacobi = time.time()
|
||||
|
||||
startGaussSeidel = time.time()
|
||||
[x_gauss_seidel, n, n2] = Schenk_Brandenberger_S10_Aufg3(A,b,x0,tol,0)
|
||||
stoppGaussSeidel = time.time()
|
||||
|
||||
startGauss = time.time()
|
||||
x_gauss = Witschi_Floian_S6_Aufg2(A,b)[2]
|
||||
stoppGauss = time.time()
|
||||
|
||||
print("***********Time Estimation***********")
|
||||
print("Time for np.linalg.solve:")
|
||||
print(stoppLinalgSolve-startLinalgSolve)
|
||||
print("Time for Jacobi:")
|
||||
print(stoppJacobi-startJacobi)
|
||||
print("Time for Gauss-Seidel:")
|
||||
print(stoppGaussSeidel-startGaussSeidel)
|
||||
print("Time for Gauss:")
|
||||
print(stoppGauss-startGauss)
|
||||
|
||||
|
||||
#In this algorithm for Jacobi and Gauss-Seidel is the B calculated every single time
|
||||
""" Time for np.linalg.solve:
|
||||
0.6146464347839355
|
||||
Time for Jacobi:
|
||||
319.44120621681213
|
||||
Time for Gauss-Seidel:
|
||||
307.4256772994995
|
||||
Time for Gauss:
|
||||
95.12803220748901 """
|
||||
|
||||
#In this algorithm for Jacobi and Gauss-Seidel is the B calculated one time
|
||||
""" Time for np.linalg.solve:
|
||||
0.5016989707946777
|
||||
Time for Jacobi:
|
||||
18.02965211868286
|
||||
Time for Gauss-Seidel:
|
||||
17.64187240600586
|
||||
Time for Gauss:
|
||||
105.31756782531738 """
|
||||
|
||||
print(x_gauss)
|
||||
|
||||
#3c
|
||||
#x_axis = np.array(["x0","x1","x2"])
|
||||
#plt.plot(x_axis, x_linalg_solve)
|
||||
x_axis = np.arange(dim)
|
||||
plt.plot(x_axis, x_gauss_seidel-x)
|
||||
plt.plot(x_axis, x_jacobi-x)
|
||||
plt.plot(x_axis, x_gauss-x)
|
||||
plt.plot(x_axis, x_linalg_solve-x)
|
||||
plt.legend(["Gauss Seidel", "Jacobi", "Gauss", "Linalg"])
|
||||
plt.show()
|
||||
|
||||
#Das Gauss-Verfahren ist genauer wie das Jacobi und Gauss-Seidel Verfahren
|
Loading…
Reference in New Issue