HM1_Aufgabenserie10/Schenk_Brandenberger_S10_Au...

66 lines
1.8 KiB
Python
Raw Permalink Normal View History

2022-12-08 21:36:38 +01:00
import numpy as np
def Single_Jacobi_Iteration(B, c, xn):
return B @ xn + c
def Single_Gauss_Seidel_Iteration(B, c, xn):
return B @ xn + c
def A_Priori_Estimation(B, x0, x1, tol):
return np.log((tol / np.linalg.norm((x1 - x0), np.inf) * (1 - np.linalg.norm(B, np.inf)))) / np.log(
np.linalg.norm(B, np.inf))
def A_Posteriori_Estimation(B, xn, xn_minus_one):
return (np.linalg.norm(B, np.inf) / (1 - np.linalg.norm(B, np.inf))) * np.linalg.norm(xn - xn_minus_one)
def Schenk_Brandenberger_S10_Aufg3a(A, b, x0, tol, opt):
A = A.astype("float64")
b = b.astype("float64")
x0 = x0.astype("float64")
x1 = np.copy(x0)
L = np.tril(A, k=-1)
D = np.diag(np.diag(A))
R = np.triu(A, k=1)
n = 1
if opt == 0:
B = -np.linalg.inv(D) @ (L + R)
c = np.linalg.inv(D) @ b
x1 = Single_Jacobi_Iteration(B, c, x0)
elif opt == 1:
B = -np.linalg.inv(D + L) @ R
c = np.linalg.inv(D + L) @ b
x1 = Single_Gauss_Seidel_Iteration(B, c, x0)
xn = np.copy(x1)
xn_minus_one = np.copy(x0)
# a-priori Abschätzung
n2 = A_Priori_Estimation(B, x0, x1, tol)
while tol < A_Posteriori_Estimation(B, xn, xn_minus_one):
xn_minus_one = np.copy(xn)
if opt == 0:
xn = Single_Jacobi_Iteration(B, c, xn)
elif opt == 1:
xn = Single_Gauss_Seidel_Iteration(B, c, xn)
n = n + 1
return (xn, n, n2)
A = np.array([[8, 5, 2], [5, 9, 1], [4, 2, 7]])
b = np.array([[19], [5], [34]])
x0 = np.array([[1], [-1], [3]])
opt = 1 # 0 is Jacobi; 1 is Gauss-Seidel
[xn, n, n2] = Schenk_Brandenberger_S10_Aufg3a(A, b, x0, 0.0001, opt)
print("Solution vector xn:")
print(xn)
print("Number of iterations:")
print(n)
print("Used steps with a priori:")
print(n2)