HM1_Aufgabenserie8/Serie8_Aufg2_Gerüst.py

51 lines
1.2 KiB
Python

# -*- coding: utf-8 -*-
"""
Created on Sat Nov 7 13:26:09 2020
Höhere Mathematik 1, Serie 8, Gerüst für Aufgabe 2
Description: calculates the QR factorization of A so that A = QR
Input Parameters: A: array, n*n matrix
Output Parameters: Q : n*n orthogonal matrix
R : n*n upper right triangular matrix
Remarks: none
Example: A = np.array([[1,2,-1],[4,-2,6],[3,1,0]])
[Q,R]=Serie8_Aufg2(A)
@author: knaa
"""
def Serie8_Aufg2(A):
import numpy as np
A = np.copy(A) #necessary to prevent changes in the original matrix A_in
A = A.astype('float64') #change to float
n = np.shape(A)[0]
if n != np.shape(A)[1]:
raise Exception('Matrix is not square')
Q = np.eye(n)
R = A
for j in np.arange(0,n-1):
a = np.copy(???).reshape(n-j,1)
e = np.eye(???)[:,0].reshape(n-j,1)
length_a = np.linalg.norm(a)
if a[0] >= 0: sig = ???
else: sig = ???
v = ???
u = ???
H = ???
Qi = np.eye(n)
Qi[j:,j:] = ???
R = ???
Q = ???
return(Q,R)