HM1_Aufgabenserie5/Schenk_Brandenberger_S5_Auf...

39 lines
1.0 KiB
Python
Raw Permalink Normal View History

2022-11-03 11:18:09 +01:00
import math
import numpy as np
import matplotlib.pyplot as plt
def f(x):
return math.pow(math.e, math.pow(x, 2)) + math.pow(x, -3) - 10
def f_diff(x):
return 2 * x * math.pow(math.pow(math.e, x), 2) - 3 * math.pow(x, -4)
2022-11-03 11:34:51 +01:00
def newtonStep(xn, function, function_diff):
return xn - (function(xn)) / (function_diff(xn))
2022-11-03 11:18:09 +01:00
2022-11-03 11:34:51 +01:00
def simpleNewtonStep(xn, function, function_diff_x0):
return xn - ((function(xn)) / (function_diff_x0))
def secantStep(xn, xn_1, function):
return xn - (xn - xn_1)/(function(xn) - function(xn_1)) * f(xn)
2022-11-03 11:18:09 +01:00
def newton(x0, iterations, function, function_diff):
print("Newton Verfahren:")
2022-11-03 11:18:09 +01:00
x = []
x.append(x0)
print("x" + str(0) + ":", str(x[0]))
for i in range(iterations):
2022-11-03 11:34:51 +01:00
x.append(newtonStep(xn=x[i], function=function, function_diff=function_diff))
2022-11-03 11:18:09 +01:00
print("x" + str(i + 1) + ":", str(x[i + 1]))
if __name__ == '__main__':
newton(x0=2, iterations=4, function=f, function_diff=f_diff)
simpleNewton(x0=0.5, iterations=4, function=f, function_diff=f_diff)