HM1_Aufgabenserie4/Schenk_Brandenberger_S4_Auf...

40 lines
1.2 KiB
Python
Raw Permalink Normal View History

2022-10-27 16:22:27 +02:00
import math
import time
import numpy as np
import matplotlib.pyplot as plt
def F(x):
return (230 * math.pow(x, 4) + 18 * math.pow(x, 3) + 9 * math.pow(x, 2) - 9) / 221
def FDiff(x):
return (920 * math.pow(x, 3) + 54 * pow(x, 2) + 18 * x) / 221
def calcAlpha(start, stop, FDiff):
x = np.arange(start, stop + abs(((start-stop)/100)), abs(((start-stop)/100)))
y = [FDiff(x_value) for x_value in x]
ymax = max(y)
return ymax
def iteration(x0, startValue, endValue, function, functionDiff, maxFehler):
alpha = calcAlpha(startValue, endValue, functionDiff)
print("alpha", alpha)
x = [x0]
n = 0
while(True):
time.sleep(1)
n = n + 1
x.append(function(x[n-1]))
print("n:", n, "x:", x[n])
fehlerabschatzung = abs(x[n] - x[n - 1]) # math.pow(alpha, n) / (1 - alpha)) *
print("fehlerabschatzung", fehlerabschatzung)
if(fehlerabschatzung < maxFehler):
print("n: ", n)
return x[n]
if __name__ == '__main__':
result = iteration(x0=-0.1, startValue=-1, endValue=0, function=F, functionDiff=FDiff, maxFehler=math.pow(10, -6))
#result = iteration(x0=-1, startValue=0, endValue=1, function=F, functionDiff=FDiff, maxFehler=math.pow(10, -6))
print(result)