diff --git a/Schenk_Brandenberger_S3_Aufg1+2+3a.pdf b/Schenk_Brandenberger_S3_Aufg1+2+3a.pdf index b9f1ad9..ee99f3b 100644 Binary files a/Schenk_Brandenberger_S3_Aufg1+2+3a.pdf and b/Schenk_Brandenberger_S3_Aufg1+2+3a.pdf differ diff --git a/Schenk_Brandenberger_S3_Aufg3b.py b/Schenk_Brandenberger_S3_Aufg3b.py new file mode 100644 index 0000000..f5c868e --- /dev/null +++ b/Schenk_Brandenberger_S3_Aufg3b.py @@ -0,0 +1,59 @@ +import numpy as np +import matplotlib.pyplot as plt +import math + +def f1(x): + return 5/((2 * x ** 2 ) ** (1/3)) + +def f2(x): + return 10 ** 5 * (2 * np.e) ** (-x/100) + +def f3(x): + x2 = 2 * x + x10_2x = math.pow(10,x2) + x5 = 5 * x + x2_5x = math.pow(2, x5) + x10_2x_x2_5x = x10_2x / x2_5x + y = math.pow(x10_2x_x2_5x, 2) + return y +xstep = 1 +xstart = xstep +xstop = 100 +x = np.arange(xstart, xstop + xstep, xstep) + +# Aufgabe (i) +y1 = [f1(x_value) for x_value in x] +plt.plot(x, y1, label="f1(x)") +# Beide Achsen logarithmisch +plt.xscale('log', base = 2) +plt.yscale('log', base = 2) +# Steigung: -2/3 +# Y-Achsenabschnitt: 0 +plt.grid() +plt.title("(i)") +plt.figure() + + +# Aufgabe (ii) +y2 = [f2(x_value) for x_value in x] +plt.plot(x, y2, label="f2(x)") +# Y - Achse logarithmisch +plt.yscale('log', base = np.e) +# Steigung: -1/3 +# Y-Achsenabschnitt: 100000 +plt.grid() +plt.title("(ii)") +plt.figure() + + +# Aufgabe (iii) +y3 = [f3(x_value) for x_value in x] +plt.plot(x, y3, label="f3(x)") +# Y - Achse logarithmisch +plt.yscale('log', base = 10) +# Steigung: 1 +# Y-Achsenabschnitt: 100000 +plt.grid() +plt.title("(iii)") + +plt.show() \ No newline at end of file