HM1_Aufgabenserie11/Schenk_Brandenberger_S11_Au...

40 lines
1.8 KiB
Python
Raw Normal View History

2022-12-15 22:23:59 +01:00
# -*- coding: utf-8 -*-
"""
Created on Sun Nov 29 14:43:17 2020
Höhere Mathematik 1, Serie 11, Aufgabe 3 (Gerüst)
@author: knaa
"""
import numpy as np
import matplotlib.pyplot as plt
detail = 1000 #number of pixels in x and y direction
maxit = 70 #maximum n for iterations
x_min = -2 #minimim value of x-interval
x_max = 0.7 #maximum value of x-interval
y_min = -1.4 #minimim vale of y-interval
y_max = 1.4 #minimim vale of y-interval
a = np.linspace(x_min, x_max, detail, dtype=np.float64) #define real axis [x_min,x_max]
b = np.linspace(y_min, y_max, detail, dtype=np.float64) #define imaginary axis [y_min,y_max]
B = np.zeros((detail,detail)) #for color valzues n
[x,y] = np.meshgrid(a, b) #to create the complex plane with the axes defined by a and b
C = x+y*1j #creating the plane
Z = np.zeros((detail, detail), np.complex64) #initial conditions (first iteration), Z has same dimension as C
for n in np.arange(1,maxit+1): #start iteration
Z = Z**2 + C #calculating Z
expl = np.where(np.abs(Z) > 2.0) #finding exploded values (i.e. with an absolute value > 2)
Z[expl] = 0 #removing from iteration
C[expl] = 0 #removing from plane
B[expl] = n #saving color value n
plt.figure(1)
B = B/np.max(np.max(B)) #deviding by max value for correct color
plt.imshow(B,extent=[x_min,x_max,y_min,y_max],origin='lower',interpolation='bilinear') #display image
plt.show()