import numpy as np print("*********Jacobi-Verfahren*********") def Jacobi(A,b,x,steps): L = np.tril(A,k=-1) D = np.diag(np.diag(A)) R = np.triu(A, k=1) for steps in range(steps): x = -np.linalg.inv(D) @ (L + R) @ x + np.linalg.inv(D) @ b #print(np.linalg.norm((-np.linalg.inv(D) @ (L + R)),np.inf)) return x A = np.array([[8,5,2],[5,9,1],[4,2,7]]) b = np.array([[19],[5],[34]]) x = np.array([[1],[-1],[3]]) steps = 3 print(Jacobi(A,b,x,steps)) print("Sum of vector:") #print(np.sum(Jacobi(A,b,x,steps))) #print(np.linalg.norm(Jacobi(A,b,x,3)-Jacobi(A,b,x,2),np.inf)*7) print(np.linalg.norm(Jacobi(A,b,x,3)-Jacobi(A,b,x,2),np.inf)) print((0.0001*0.125)/0.7693452380952384)