
ZHAW Computer Engineering / 02.10.2022 1

CT Lab: Introduction to Assembly

1 Introduction

In this lab you will work for the first time with assembly programs. You will learn the possibili-
ties of the remote debugger to visualize and change the memory and register content. You will
trace the influence of several data transfer commands and their addressing modes with the
remote debugger.

2 Learning Objectives

 You can assemble, link, upload and execute an assembly program on the target hard-
ware.

 You know how to use the remote debugger, to visualize and change the content of
memory, registers and ports.

 You understand the different addressing modes in simple programs and are able to
apply them.

3 Assembling and Loading an Assembly Program

In this chapter you’ll learn how to assemble and link a program for the CT Board and how to
upload it to the target hardware.

Assembling means to translate the text based source code (coded in assembly lan-
guage) into op codes used by the target hardware. This process is done by an assem-
bler. The reverse process, translating op code to assembly language, is called disas-
sembling.

Open the Assembly Project

Download the given project frame (student_projects.zip) from https://moodle.zhaw.ch. Open
the project with uVision.

Assembling and Linking

To assemble and link the project, use the rebuild button in uVision. The result of the
build process is shown in the output window.

Along with the object files the assembler also creates a so called assembly list file
(transbf.lst). It is located in the build directory. This file also contains the source code in as-
sembly syntax (right column) and a column with line numbers, the addresses of the op codes
and the op code (both in hexadecimal notation). The file can be opened with uVision or any
text editor such as Notepad++.

ZHAW Computer Engineering / 02.10.2022 2

3.1 Task 1

Which op codes are generated by the assembler for the following assembly instructions?
Search for the corresponding op code in the list file and use the disassembly table to decode
the hexadecimal values. Fill in the gaps in the following table based on the example.

Assembly Code Op Code (Hex)

Example

MOVS R1, #0xfe
0x21FE (from the list file)

 Bit 15 Bit 0

 MOVS R1 imm8

0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 0

MOVS R2, #MY_CONST

 Bit 15 Bit 0

MOV R11, R2

 Bit 15 Bit 0

LDR R0, [R7]

 Bit 15 Bit 0

STR R3, [R7,R6]

 Bit 15 Bit 0

ZHAW Computer Engineering / 02.10.2022 3

3.2 Task 2

The given program is split into three sections (AREA). What are the three sections and what
are their properties?

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

3.3 Task 3

How many bytes does each section contain?

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

After assembling, each section begins at the address 0x0000’0000. The physical addresses
are assigned during the linking process.

Uploading onto the Target Hardware

Switch on the target hardware. Ensure that the USB connection on the left side of the target
hardware is connected to the host computer.

Start the debugger. The program now gets uploaded into the flash memory of the
target hardware and halted at the first instruction in the code section.

Caution: Don’t press “Run (F5)”, the programm has to be halted for the following
manipulations.

4 Memory Content on Target System after Loading

While the lst files contain the listing of the assembly translation of each module, the project’s
map file contains the listing of the linker actions and symbol resolution in the final executable.

4.1 Code Section

Before we run the program we want to take a look at the memory content on the target hard-
ware. We want to see where exactly the program has been loaded.

Memory View

In the right bottom corner of uVision you’ll see the call stack or alternatively the memory view
(See Figure 1). If this is not the case, go to View Memory Windows and activate Memory 1.
Now you should see it in the main window.

ZHAW Computer Engineering / 02.10.2022 4

Figure 1 uVision Memory View

4.1.1 Task 4

Open the transbf.map file in uVision or some text editor and search for the symbol MyCode.
The associated address needs to be rounded to an even value.

Click on Memory 1 and enter the start address of the main function code section in the field
Address. Can you locate the op codes from the list file in memory?

Load Address

By default the remote debugger loads the program at address 0x0800’0000. At this address
the flash memory is located on the target hardware. The memory space from here to the be-
ginning of the main function contains the initialization code for the microcontroller.

4.1.2 Task 5 – Deviations

Compared to the list file the order of the two op code bytes is reversed. What could be the
reason?

………………………………………………………………………………………………………

Some bytes will be defined after the creation of the list file (by the linker). At these positions
the memory content differs from the list file. Find corresponding bytes! What could be the rea-
son?

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

4.2 Data Section (Read only)

Definition of Variables

The sample program defines several global variables in the data section. The assembler direc-
tives DCD, DCW and DCB reserve memory.

An assembler directive is a directive of the programmer for the translation program, the as-
sembler. The assembler directive does not get translated into executable op codes, i.e. there
is no corresponding op code.

4.2.1 Task 6 – Memory View

The debugger will allocate the storage region of the read-only data section right after the read-
only code section. The starting address of this section is given by the first constant in the read-
only data section. I.e. the first constant is at label addr_dip_switch. Search this symbol in the
transbf.map file for the start address of the respective memory area and fill in the following
table with the values and start addresses of the given constants.

ZHAW Computer Engineering / 02.10.2022 5

Variable name Content Start address

addr_dip_switch

const_table[0]

const_table[1]

const_table[2]

const_table[3]

ZHAW Computer Engineering / 02.10.2022 6

4.3 Data Section (Read Write)

Definition of Variables

The sample program defines a global variable in the read-write data section (RAM). The as-
sembler directive SPACE reserves memory space and fills it with zero.

Memory View

The read-write data section of the CT Board begins in the RAM at address 0x2000’0000.
The stack and the heap section are inserted after this section. You find the respective infor-
mation in the transbf.map file by searching for the symbol of the first variable of the read-write
data section.

5 Function of the Program

The given program transbf.s demonstrates different commands, used to load and store val-
ues. It shows how constants are defined and loaded, and how the load and store commands
are used.

5.1 Task 7

Study the code in the list file. What are the results of the indicated instructions? Fill in the fol-
lowing table with the expected values of the target registers after the corresponding line of
code has been executed.

Line Instruction Content of target register

*** A1 *** MOVS R1, #0xfe

*** A2 *** MOV R11, R2

*** A3 *** LDR R3, =ADDR_DIP_SWITCH_31_0

*** A4 *** LDR R7, addr_dip_switch

*** A5 *** LDR R7, =addr_dip_switch

*** A6 *** LDR R1, [R7, #4]

*** A7 *** LDR R3, [R7, R6]

5.2 Task 8

Execute the program step by step. Check your values in the table. Be aware of the differences
between the two lines marked with A4 and A5 (LDR as literal and as pseudo instruction). Do
they meet your expectations?

ZHAW Computer Engineering / 02.10.2022 7

6 Altering the Processor State (Optional)

With the debugger you are not only able to observe the processor state; you are also able to
alter it directly. This enables you to comfortably debug your program without changing it.

Altering Memory Content

Within the Memory 1 window you can directly alter the content of the memory (RAM). Input the
address 0x2000’0000 into the address field of the window. This is the start of the RAM sec-
tion. A double click on a particular value lets you alter its content. If you cannot alter the con-
tent, make sure the lock in the top right of the Memory 1 windows is open. If it’s closed you
can open it with a left click.

Altering Register Content

The current content of the processor registers can be observed in
the upper left part of the main window, as well as the processor
state (xPSR, Processor Status Register) with its flags.

You can change the content of these registers as well as the flags in
the xPSR with a double click on the corresponding register.

6.1 Task 9 – Customize the Output (optional)

Now change the variable store_table in the RAM in such a way, that with the execution of line
101 every second LED on the CT Board is bright. Which memory cell do you need to modify?

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

7 Grading

Task Criteria Weight

3
The tables are filled in correctly and the questions are answered. You
can explain your reasoning.

1/4

4 1/4

5.1 1/4

5.2
You briefly explain how you used the debugger and can answer ques-
tions about it.

1/4

