
ZHAW Computer Engineering / 31.07.2017 1

CT Lab: ALU and Branch Instructions

1 Introduction

An Arithmetic Logic Unit (ALU) can perform add, multiply, shift, rotate and compare opera-
tions. You have already used some of these operations in previous labs. In this lab you will
learn to use additional ALU operations as well as branch instructions.

Implement a program for the conversion of BCD values into binary values. The numbers will
be displayed in various ways.

2 Learning Objectives

 You can apply logical, arithmetic and shift instructions.

 You can implement a multiplication with the MULS instruction as well as with a combina-

tion of shift and add instructions.

 You can compare values with each other and apply corresponding branch instructions.

3 Tasks

3.1 Task 1 –BCD to Binary

Use the project frame bcd. Read a BCD input from the DIP-switches. The switches S3 to S0
shall contain the ones and the switches S11 to S8 shall contain the tens. The two digits shall
be combined, so that the BCD value can be displayed on LED7 to LED0 and the correspond-
ing binary value on LED15 to LED8. Additionally the BCD value shall be displayed on the 7-
segment display DS1 / DS0 and the HEX value on DS3 / DS2 (See Figure 1).

You shall only enter valid BCD values. The program does not have to validate the input.

Figure 1: Function Example with Tens = 4 and Ones = 3

BCD Ones BCD Tens Binary Value

BCD Ones BCD Tens

ZHAW Computer Engineering / 31.07.2017 2

Solve the task as follows:

a) Use the MULS instruction for the multiplication by 10.

b) Expand your implementation of the multiplication. If button T0 is pressed, use only
shift and add instructions for the multiplication and set the background of the LCD to

red. If button T0 is not pressed use the MULS instruction from a) and set the LCD

background to blue.

 There are special addresses for accessing the display with binary values. Check the
CT Board Wiki for the binary interface of the 7-segment displays.

3.2 Task 2 – Rotating „Disco Lights“

Expand your program, so that the total number of ‘1’ bits in the binary value is represented as
a bar on the LEDs:

a) LED31 to LED 16 shall display a bar. The width of the bar from the right shall corre-
spond to the number of LEDs that are turned on for LED15 to LED8. I.e. the width of
the LED bar corresponds to the number of ones in the binary value.

b) Let this LED bar fully rotate once per main loop. The direction of the rotation shall be
from left to right. Ones that “fall out” on the right side shall re-enter on the left side.
Pause after every shift operation, so that the rotation is visible.

Figure 2 shows various stages of the rotating LED bar.

Figure 2: Rotating „Disco Lights“

 Use the predefined subroutine for your pause. It can be called using BL pause. With

this subroutine no relevant registers get changed.

 LED31 to LED16 are aligned to a half word address. Use STRH for updating to avoid

overwriting any other registers on the CT Board!

 How do you seamlessly rotate a half word (16 bit)? The processor only has a rotate in-
struction for a word (32 bit).
Load the half word into the lower two bytes of a register. Duplicate the two bytes into
the upper two bytes of the same register (using LSLS and ORRS). Then go ahead and
use the 32 bit rotation.

P
ro

g
ra

m
 S

e
q
u

e
n
c
e

ZHAW Computer Engineering / 31.07.2017 3

4 Optional Tasks

4.1 Task 3 – Verifying if BCD Input Value is valid (optional)

Verify the validity of the value entered on the DIP switches. If the value is invalid all LEDs shall
be turned off.

4.2 Task 4 – Observing Instruction Cycles (optional)

Assemble, link and load the project optional. Observe what happens at the end of each in-
struction in the registers and with the flags. This optional task is recommended because,
amongst other things, it shows the implementation of a C switch-case instruction in assembly.

5 Grading

The working programs have to be presented to the lecturer. The student has to understand the
solution / source code and has to be able to explain it to the lecturer.

Task Criteria Weight

3.1 / a) The program meets the requirements. 1/4

3.1 / b) The program meets the requirements. 1/4

3.2 / a) The program meets the requirements. 1/4

3.2 / b) The program meets the requirements. 1/4

