CT Lab: Data Transfer Instructions

1 Introduction

In this Lab you will write your first assembly program. The program reads data from the DIP-
switches (of the target hardware) and stores them in a table. The table elements can be se-
lected through the DIP-switches and are displayed on the 7-segment display.

2 Learning Objectives

Using assembly language you are able
¢ toinput and output data on the CT Board
¢ to allocate memory for tables

e to access tables with byte elements as well as tables with half word elements

3 Task 1 —Input and Output of Table Values

Write an assembly program: Upon every press of button TO the program shall read a 4-bit
input index (S11 to S8) and an 8-bit input value (S7 to S0) from the DIP-switches. The input
value shall be stored in a table in RAM at the position provided by the input index. For debug-
ging, the input value shall be displayed on LED7 to LEDO (See Figure 1). In addition, the input
index shall be displayed on LED11 to LEDS.

4 bit Index
byte_array’ +0 Value 0
+1 Value 1
+2 Read from posi-

tion ,output in-

deX“/y 8 bit output value

8 bit input value

..... Write to position
»input index*

+F Value F

Figure 1: Writing and reading values to/from a table in memory

' The start address (i.e. the memory address of the element with index 0) has the name (label)
byte_array.

ZHAW Computer Engineering / 31.08.2017 1

Additionally a table value shall be queried on each turn. The desired output index can be se-
lected through the DIP-switches S27 to S24 and shall be displayed on LED27 to LED24. The
corresponding table value shall be displayed on LED23 to LED16. Figure 2 shows how the
different values shall be read from or written to the target hardware.

pL 2 3 2]
DI D2 D3 D4 D5 D& 07 08 DS DIODI1 D12 DI3D14DIS 016 D17 D18 019020 D21 022023024 I:' 025026027 028 029030031 D32
goooDoooooDo goooooDoDo o 0oao
[demio [e [ez [Jruz [drns [Jraiseu s | emz[|
1
c3s
|_ I:l I:l ae2[] ﬁ [Jro
L o e 2]
7 | e cl0 SR R3[| IEM
" i =L %%{ﬁa u HfEcw? IseL & t
8
C B f |
Display
x3 B §agz=~ Output Index
mos 5 oo g oooooo |
Eﬁigﬁ U =63 MBEEEE C36 €39 5
s |Tad5k 2 H:ILwlords. A"y [Display } -
naex an alue as o
00 [read from table :I‘ _ LEpal.z8 [\ | LEDZ7..24 iOUtpu:Nvalue 3
I — —_ R 3
T3 03 oss os2 wmo_OUtput Index
F100 P10l .
M O e UUL _H_” —
L100 L101 g ? Seg |7 Seg Fom $31 530 529 528527 $26 525 524)) $23522 521 520518 518 S17 S1& Pe
B) el Divplay
s(3wwwm Gy] Inputindex > [Dlsplay]
5o RNZI RNZO RNIS RNIS Ly
?D: R4C [] R200) — & ‘o [\ l_Leoii InpUt Value 0
I 28150 R \ L
2[]2 gg%gég T Input Index L
°=° 3 Sar f Input Value
LEDlu::lmou L T2 n © 575574 513 5171 SI0 55 55 \37 55 55 5453 52 5150,

Figure 2: In- and output of table values

3.1 Given Program Frame

Use the given program frame for this lab with the assembly file table.s. It contains a while loop
and the subprogram waitForKey, which gets called with the assembly command BL. The sub-

program waits until the user presses button TO and then continues. Expand the program step
by step at the marked positions.

3.2 Read Input Index and Input Value

In this step you read the input index and the input value, both of which you need for writing into
the table. Read the values for the input index from the DIP-switches S11 to S8 and the input
value from S7 to SO. You can directly read a byte from the corresponding addresses. You
have to mask the upper bits of the input index (i.e. clear the bits to 0) with the following instruc-
tions (BITMASK LOWER NIBBLE is already defined in the program frame).

LDR R7, =BITMASK LOWER NIBBLE
ANDS R1l, R1l, R7

Display the values read on LED7 to LEDO and LED11 to LEDS. If a bit is ‘1’ the corresponding
LED shall be on. Check whether the masking of the input index works as intended.

ZHAW Computer Engineering / 31.08.2017 2

3.3 Store in Table

Allocate memory in the data section for a table with 16 byte values (assembly directive
SPACE). Be aware of the fact, that the elements are not initialized when the program starts.
Store the previously read input values at the correct position in the table (input index).

Test your program with different input indexes and values by verifying the content of the table
through the debugger (See Figure 3).

Memory 1 e @

-

Address: |(:20000000

0x20000000:|00 01 02 03 04 05 06 07 08 0% QA OB OC OD OE 0F|53 40 64 1E F& D1 49 1C 52 1E 00 2A& F2 D1 70 47 05 EO
0x20000022: 03 78 40 1C 93 42 01 DO 01 20 70 47 49 1E F7 D2 00 20 70 47 00 &0 01 46 00 O3 00 OE 20 28 02 D3 40 09
0x20000044: 00 1D O5 EO 10 28 02 D3 00 09 CO 1C 00 EOQ 80 08 C9 02 01 D5 10 21 08 43 70 47 46 48 44 49 41 &0 45 49
0x20000066: 41 60 00 21 01 60 C1 68 FO 22 11 43 C1 &0 40 €9 80 06 06 D4 42 48 40 495 01 60 06 21 41 60 40 49 81 &0
0x20000088: 00 20 70 47 3A 48 01 69 42 05 11 43 01 &1 00 20 70 47 30 BS 36 48 01 69 04 24 21 43 01 61 01 &9 &5 03

1 Ox200000R%: 29 43 01 61 01 69 &2 03 11 43 01 61 35 49 32 44 00 EO 11 60 C3 68 DB 03 FB D4 01 &9 21 43 01 61 01 &3
Ox200000CC 30 RN 30 BRE FF F7 AF FF 27 49 A A8 FO 23 1A 43 CA A0 02 24 0OC &1 0OA A9 OO 0OF 00 OF
@ Call stack + Locals

5T-Link Debugger t1: 370.29010430 sec L:71 C61 CAP NUM SCRL OVR R/W

Figure 3: uVision Debugger Memory View

e The Memory view is only refreshed if you re-enter the address and press enter.

3.4 Read and Display the Output Index

Read the output index from the DIP-switches S27 to S24. You also have to mask the upper 4
bits.

Display the index on LED27 to LED24. Verify the correct behavior by trying different positions
of the DIP-switches.

o For every change on the DIP-switches the button TO has to be pressed to display the
changes.

3.5 Display the Selected Table Value

Use the output index to access the table and display the corresponding value on LED23 to
LED16.

Verify the correct function of your program by filling the table with defined values and reading
them afterwards.

ZHAW Computer Engineering / 31.08.2017 3

4 Task 2 — Variant with Half Word Table

Create a new version of your program that uses a table of half word elements instead of bytes.
Additionally to the input value (stored in the least significant byte), the input index shall be
stored in the most significant byte of the table element.

Additionally to the existing display options, use the 7-segment display to simultaneously output
the contents of the selected half-word in the table: index (DS3 to DS2) and corresponding val-
ue (DS1 to DSO0).

Make

a copy of your existing (and working) project and expand on this copy.

Since a half word contains two bytes, you have to multiply your table index by two.

You can use the “logic shift left” instruction to achieve this.
LSLS R1, R1, #1

To display the values on the 7-segment display, use the addresses, which are de-
scribed on the CT-Wiki Page 7-Segment Binary Interface. This way you can directly

display the values in hexadecimal representation.

5 Task 3 — Implementation in C (optional)

Write a program in C, which stores values in a table. Define a global table of uint8_t ele-
ments. Bit masks and access addresses shall be defined using #define.

#define BITMASK KEY TO 0x01
uint8 t byteTable[l6];

volid main (void) {

6 Grading

The working programs have to be presented to the lecturer. The student has to understand the
solution / source code and has to be able to explain it to the lecturer.

Task Criteria Weight
1 The program meets the requirements. 2/4
The program meets the requirements. You can explain which changes
2 2/4
you made and why you made them.
ZHAW Computer Engineering / 31.08.2017 4

	CT Lab: Data Transfer Instructions
	1 Introduction
	2 Learning Objectives
	3 Task 1 – Input and Output of Table Values
	3.1 Given Program Frame
	3.2 Read Input Index and Input Value
	3.3 Store in Table
	3.4 Read and Display the Output Index
	3.5 Display the Selected Table Value

	4 Task 2 – Variant with Half Word Table
	5 Task 3 – Implementation in C (optional)
	6 Grading

