
ZHAW Computer Engineering / 31.08.2017 1

CT Lab: Data Transfer Instructions

1 Introduction

In this Lab you will write your first assembly program. The program reads data from the DIP-
switches (of the target hardware) and stores them in a table. The table elements can be se-
lected through the DIP-switches and are displayed on the 7-segment display.

2 Learning Objectives

Using assembly language you are able

• to input and output data on the CT Board

• to allocate memory for tables

• to access tables with byte elements as well as tables with half word elements

3 Task 1 – Input and Output of Table Values

Write an assembly program: Upon every press of button T0 the program shall read a 4-bit
input index (S11 to S8) and an 8-bit input value (S7 to S0) from the DIP-switches. The input
value shall be stored in a table in RAM at the position provided by the input index. For debug-
ging, the input value shall be displayed on LED7 to LED0 (See Figure 1). In addition, the input
index shall be displayed on LED11 to LED8.

 4 bit Index

byte_array1 +0 Value 0
 +1 Value 1
 +2

 …. 8 bit output value

 8 bit input value

 +F Value F

Figure 1: Writing and reading values to/from a table in memory

1 The start address (i.e. the memory address of the element with index 0) has the name (label)
byte_array.

Write to position
„input index“

Read from posi-
tion „output in-
dex“

ZHAW Computer Engineering / 31.08.2017 2

Additionally a table value shall be queried on each turn. The desired output index can be se-
lected through the DIP-switches S27 to S24 and shall be displayed on LED27 to LED24. The
corresponding table value shall be displayed on LED23 to LED16. Figure 2 shows how the
different values shall be read from or written to the target hardware.

Figure 2: In- and output of table values

3.1 Given Program Frame
Use the given program frame for this lab with the assembly file table.s. It contains a while loop
and the subprogram waitForKey, which gets called with the assembly command BL. The sub-
program waits until the user presses button T0 and then continues. Expand the program step
by step at the marked positions.

3.2 Read Input Index and Input Value
In this step you read the input index and the input value, both of which you need for writing into
the table. Read the values for the input index from the DIP-switches S11 to S8 and the input
value from S7 to S0. You can directly read a byte from the corresponding addresses. You
have to mask the upper bits of the input index (i.e. clear the bits to 0) with the following instruc-
tions (BITMASK_LOWER_NIBBLE is already defined in the program frame).

 LDR R7, =BITMASK_LOWER_NIBBLE
 ANDS R1, R1, R7

Display the values read on LED7 to LED0 and LED11 to LED8. If a bit is ‘1’ the corresponding
LED shall be on. Check whether the masking of the input index works as intended.

Input Value
Input Index

Display
Input Value

Display
Input Index

Display
Output Value

Output Index

Display
Output Index

T0

Task 2 Half words:
Index and Value as
read from table

ZHAW Computer Engineering / 31.08.2017 3

3.3 Store in Table
Allocate memory in the data section for a table with 16 byte values (assembly directive
SPACE). Be aware of the fact, that the elements are not initialized when the program starts.
Store the previously read input values at the correct position in the table (input index).
Test your program with different input indexes and values by verifying the content of the table
through the debugger (See Figure 3).

Figure 3: uVision Debugger Memory View

3.4 Read and Display the Output Index
Read the output index from the DIP-switches S27 to S24. You also have to mask the upper 4
bits.
Display the index on LED27 to LED24. Verify the correct behavior by trying different positions
of the DIP-switches.

3.5 Display the Selected Table Value
Use the output index to access the table and display the corresponding value on LED23 to
LED16.
Verify the correct function of your program by filling the table with defined values and reading
them afterwards.

• The Memory view is only refreshed if you re-enter the address and press enter.

• For every change on the DIP-switches the button T0 has to be pressed to display the
changes.

ZHAW Computer Engineering / 31.08.2017 4

4 Task 2 – Variant with Half Word Table

Create a new version of your program that uses a table of half word elements instead of bytes.
Additionally to the input value (stored in the least significant byte), the input index shall be
stored in the most significant byte of the table element.
Additionally to the existing display options, use the 7-segment display to simultaneously output
the contents of the selected half-word in the table: index (DS3 to DS2) and corresponding val-
ue (DS1 to DS0).
Make a copy of your existing (and working) project and expand on this copy.

5 Task 3 – Implementation in C (optional)

Write a program in C, which stores values in a table. Define a global table of uint8_t ele-
ments. Bit masks and access addresses shall be defined using #define.

#define BITMASK_KEY_T0 0x01

uint8_t byteTable[16];

void main(void) {

....

}

6 Grading

The working programs have to be presented to the lecturer. The student has to understand the
solution / source code and has to be able to explain it to the lecturer.

Task Criteria Weight

1 The program meets the requirements. 2/4

2 The program meets the requirements. You can explain which changes
you made and why you made them. 2/4

• Since a half word contains two bytes, you have to multiply your table index by two.
You can use the “logic shift left” instruction to achieve this.
LSLS R1, R1, #1

• To display the values on the 7-segment display, use the addresses, which are de-
scribed on the CT-Wiki Page 7-Segment Binary Interface. This way you can directly
display the values in hexadecimal representation.

	CT Lab: Data Transfer Instructions
	1 Introduction
	2 Learning Objectives
	3 Task 1 – Input and Output of Table Values
	3.1 Given Program Frame
	3.2 Read Input Index and Input Value
	3.3 Store in Table
	3.4 Read and Display the Output Index
	3.5 Display the Selected Table Value

	4 Task 2 – Variant with Half Word Table
	5 Task 3 – Implementation in C (optional)
	6 Grading

